Large values of $n/\varphi (n)$ and $\sigma (n)/n$

Type: Article

Publication Date: 2022-12-19

Citations: 1

DOI: https://doi.org/10.4064/aa220705-12-10

Locations

  • Acta Arithmetica - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ PDF Chat On the distribution of $\phi(\sigma(n))$ 2024 Saunak Bhattacharjee
Anup B. Dixit
+ The distribution functions of $\sigma(n)/n$ and $n/\phi(n)$, II 2010 Andreas Weingartner
+ On the equation $\varphi (n)=\varphi (n+1)$ 2020 Paul Kinlaw
Mitsuo KOBAYASHI
Carl Pomerance
+ Average Order of the Euler Phi Function and the Largest Integer Function 2021 N. A. Carella
+ PDF Chat On the sum of the first n values of the Euler function 2014 R. Balasubramanian
Florian Luca
Dimbinaina Ralaivaosaona
+ Monotone non-decreasing sequences of the Euler totient function 2023 Terence Tao
+ PDF Chat Robin inequality for n/phi(n) 2024 Jean-Louis Nicolas
+ Small values of the Euler function and the Riemann hypothesis 2012 Jean-Louis Nicolas
+ Small values of the Euler function and the Riemann hypothesis 2012 Jean-Louis Nicolas
+ PDF Chat Sums related to Euler's totient function 2024 Artyom Olegovich Radomskii
+ A positive lower bound for $\liminf_{N\to\infty} \prod_{r=1}^N \left| 2\sin \pi r \varphi \right|$ 2018 Sigrid Grepstad
Lisa Kaltenböck
Mario NeumĂĽller
+ Distribution of values of general Euler totient function 2023 Debika Banerjee
Bittu Chahal
Sneha Chaubey
Khyati Khurana
+ On some properties of $\sigma(N)$ 2007 Tomohiro Yamada
+ $\sum_{p\le n} 1/p = \ln(\ln n) + O(1)$: An Exposition 2015 William Gasarch
Larry Washington
+ $\sum_{p\le n} 1/p = \ln(\ln n) + O(1)$: An Exposition 2015 William Gasarch
Larry Washington
+ The Euler characteristic of $\operatorname{Out}(F_n)$ 2019 Michael Borinsky
Karen Vogtmann
+ Extreme values of the Dedekind $Ψ$ function 2010 Patrick Solé
Michel Planat
+ PDF Chat Small values of the Euler function and the Riemann hypothesis 2012 Jean-Louis Nicolas
+ Average Orders of the Euler Phi Function, The Dedekind Psi Function, The Sum of Divisors Function, And The Largest Integer Function 2021 N. A. Carella
+ PDF Chat Extreme values of the Dedekind $\Psi$ function 2011 Patrick Solé
Michel Planat

Works That Cite This (1)

Action Title Year Authors
+ Inequalities involving arithmetic functions 2024 Stoyan Dimitrov