Large subsets of $$\mathbb {Z}_m^n$$ without arithmetic progressions

Type: Article

Publication Date: 2022-12-15

Citations: 1

DOI: https://doi.org/10.1007/s10623-022-01145-w

Abstract

For integers

Locations

  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • Designs Codes and Cryptography - View - PDF

Similar Works

Action Title Year Authors
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ PDF Chat Caps and progression-free sets in $${{\mathbb {Z}}}_m^n$$ 2020 Christian Elsholtz
Péter Pál Pach
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob FĂĽhrer
+ Long arithmetic progressions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>A</mml:mi><mml:mo>+</mml:mo><mml:mi>A</mml:mi><mml:mo>+</mml:mo><mml:mi>A</mml:mi></mml:math> with A a prime subset 2012 Zhen Cui
Hongze Li
Boqing Xue
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ Sets avoiding six-term arithmetic progressions in $\mathbb{Z}_6^n$ are exponentially small 2020 Péter Pál Pach
Richárd Palincza