Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2211.02588

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Large subsets of $$\mathbb {Z}_m^n$$ without arithmetic progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob FĂĽhrer
+ PDF Chat Caps and progression-free sets in $${{\mathbb {Z}}}_m^n$$ 2020 Christian Elsholtz
Péter Pál Pach
+ Effective Bounds for Restricted $3$-Arithmetic Progressions in $\mathbb{F}_p^n$ 2023 Amey Bhangale
Subhash Khot
Dor Minzer
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Sets avoiding six-term arithmetic progressions in $\mathbb{Z}_6^n$ are exponentially small 2020 Péter Pál Pach
Richárd Palincza
+ Rank counting and maximum subsets of $\mathbb{F}^n_q$ containing no right angles 2016 Gennian Ge
Chong Shangguan

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors