On large subsets of $F_q^n$ with no three-term arithmetic progression

Type: Preprint

Publication Date: 2016-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.1605.09223

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On large subsets of $F_q^n$ with no three-term arithmetic progression 2016 Jordan S. Ellenberg
Dion Gijswijt
+ PDF Chat On large subsets of $\mathbb{F}_q^n$ with no three-term arithmetic progression 2016 Jordan S. Ellenberg
Dion Gijswijt
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Formalizing the Solution to the Cap Set Problem 2019 Sander R. Dahmen
Johannes Hölzl
Robert Y. Lewis
+ A Motivated Rendition of the Ellenberg-Gijswijt Gorgeous proof that the Largest Subset of $F_3^n$ with No Three-Term Arithmetic Progression is $O(c^n)$, with $c=\root 3 \of {(5589+891\,\sqrt {33})}/8=2.75510461302363300022127...$ 2016 Doron Zeilberger
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ The Kelley--Meka bounds for sets free of three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ Formalizing the solution to the cap set problem 2019 Sander R. Dahmen
Johannes Hölzl
Robert Y. Lewis
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ On the number of three-term arithmetic progressions in a dense subset of $F_q^n$ 2016 Shanshan Du
Hao Pan
+ Improved explicit upper bounds for the Cap Set Problem 2021 Zhi Jiang
+ PDF Chat Improved explicit upper bounds for the Cap Set Problem 2021 Zhi Jiang
+ PDF Chat A set of squares without arithmetic progressions 2012 Katalin Gyarmati
Imre Z. Ruzsa
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs

Works That Cite This (2)

Action Title Year Authors
+ PDF Chat The cap set problem and standard diagrams 2021 Henry Robert Thackeray
+ PDF Chat None 2017 Shachar Lovett

Works Cited by This (0)

Action Title Year Authors