Entropy jumps for isotropic log-concave random vectors and spectral gap

Type: Preprint

Publication Date: 2012-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1206.5098

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Entropy jumps for isotropic log-concave random vectors and spectral gap 2012 Keith Ball
Van Hoang Nguyen
+ Entropy jumps for random vectors with log-concave density and spectral gap 2012 Keith Ball
Van Hoang Nguyen
+ PDF Chat Entropy jumps for isotropic log-concave random vectors and spectral gap 2012 Keith Ball
Van Hoang Nguyen
+ PDF Chat Entropy and Information jump for log-concave vectors 2023 Pierre Bizeul
+ Entropy and Information jump for log-concave vectors 2021 Pierre Bizeul
+ PDF Chat Isotropic log-concave measures 2014 Silouanos Brazitikos
Apostolos Giannopoulos
Petros Valettas
Beatrice-Helen Vritsiou
+ A Note on the Spectral Gap for Log-Concave Probability Measures on Convex Bodies 2024 Michel Bonnefont
Aldéric Joulin
+ PDF Chat On the monotonicity of discrete entropy for log-concave random vectors on $\mathbb{Z}^d$ 2024 Matthieu Fradelizi
Lampros Gavalakis
Martin Rapaport
+ PDF Chat Entropies, convexity, and functional inequalities 2004 Djalil Chafaï
+ Entropy versus variance for symmetric log-concave random variables and related problems. 2018 Mokshay Madiman
Piotr Nayar
Tomasz Tkocz
+ PDF Chat The Entropy Per Coordinate of a Random Vector is Highly Constrained Under Convexity Conditions 2011 Sergey G. Bobkov
Mokshay Madiman
+ Intrinsic entropies of log-concave distributions 2017 Varun Jog
Venkat Anantharam
+ Intrinsic entropies of log-concave distributions 2017 Varun Jog
Venkat Anantharam
+ The entropy per coordinate of a random vector is highly constrained under convexity conditions 2010 Sergey G. Bobkov
Mokshay Madiman
+ The entropy per coordinate of a random vector is highly constrained under convexity conditions 2010 Sergey G. Bobkov
Mokshay Madiman
+ Entropy Jumps for Radially Symmetric Random Vectors 2016 Thomas A. Courtade
+ PDF Chat Entropies, convexity, and functional inequalities, On $\Phi $-entropies and $\Phi $-Sobolev inequalities 2004 Djalil Chafaï
+ PDF Chat Concentration of information content for convex measures 2020 Matthieu Fradelizi
Jiange Li
Mokshay Madiman
+ PDF Chat Entropy and the hyperplane conjecture in convex geometry 2010 Sergey G. Bobkov
Mokshay Madiman
+ Stein's density approach for discrete distributions and information inequalities 2012 Christophe Ley
Yvik Swan

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors