Ask a Question

Prefer a chat interface with context about you and your work?

On the monotonicity of discrete entropy for log-concave random vectors on $\mathbb{Z}^d$

On the monotonicity of discrete entropy for log-concave random vectors on $\mathbb{Z}^d$

We prove the following type of discrete entropy monotonicity for isotropic log-concave sums of independent identically distributed random vectors $X_1,\dots,X_{n+1}$ on $\mathbb{Z}^d$: $$ H(X_1+\cdots+X_{n+1}) \geq H(X_1+\cdots+X_{n}) + \frac{d}{2}\log{\Bigl(\frac{n+1}{n}\Bigr)} +o(1), $$ where $o(1)$ vanishes as $H(X_1) \to \infty$. Moreover, for the $o(1)$-term we obtain a rate of convergence $ O\Bigl({H(X_1)}{e^{-\frac{1}{d}H(X_1)}}\Bigr)$, where …