A stationary model of non-intersecting directed polymers

Type: Article

Publication Date: 2023-01-27

Citations: 1

DOI: https://doi.org/10.1088/1751-8121/acb6c8

Abstract

Abstract We consider the partition function <?CDATA $Z_{\ell}(\vec x,0\vert \vec y,t)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mi>ℓ</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mover> <mml:mi>x</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> of <?CDATA $\ell$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> </mml:math> non-intersecting continuous directed polymers of length t in dimension <?CDATA $1+1$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:math> , in a white noise environment, starting from positions <?CDATA $\vec x$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover> <mml:mi>x</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> </mml:math> and terminating at positions <?CDATA $\vec y$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> </mml:math> . When <?CDATA $\ell = 1$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:math> , it is well known that for fixed x , the field <?CDATA $\log Z_1(x,0\vert y,t)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi>log</mml:mi> <mml:msub> <mml:mi>Z</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:math> solves the Kardar–Parisi–Zhang equation and admits the Brownian motion as a stationary measure. In particular, as t goes to infinity, <?CDATA $Z_1(x,0\vert y,t)/Z_1(x,0\vert 0,t) $?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>Z</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>Z</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> converges to the exponential of a Brownian motion B ( y ). In this article, we show an analogue of this result for any <?CDATA $\ell$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> </mml:math> . We show that <?CDATA $Z_{\ell}(\vec x,0\vert \vec y,t)/Z_{\ell}(\vec x,0\vert \vec 0,t) $?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mi>ℓ</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mover> <mml:mi>x</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mi>ℓ</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mover> <mml:mi>x</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mover> <mml:mn>0</mml:mn> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> converges as t goes to infinity to an explicit functional <?CDATA $Z_{\ell}^\mathrm{\,stat}(\vec y)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mi>ℓ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo stretchy="false">)</mml:mo> </mml:math> of <?CDATA $\ell$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> </mml:math> independent Brownian motions. This functional <?CDATA $Z_{\ell}^\mathrm{\,stat}(\vec y)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mi>ℓ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>⃗</mml:mo> </mml:mover> <mml:mo stretchy="false">)</mml:mo> </mml:math> admits a simple description as the partition sum for <?CDATA $\ell$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> </mml:math> non-intersecting semi-discrete polymers on <?CDATA $\ell$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ℓ</mml:mi> </mml:math> lines. We discuss applications to the endpoints and midpoints distribution for long non-crossing polymers and derive explicit formula in the case of two polymers. To obtain these results, we show that the stationary measure of the O’Connell–Warren multilayer stochastic heat equation is given by a collection of independent Brownian motions. This in turn is shown via analogous results in a discrete setup for the so-called log-gamma polymer and exploit the connection between non-intersecting log-gamma polymers and the geometric Robinson–Schensted–Knuth correspondence found in Corwin-O’Connell-Seppäläinen-Zygouras (2014 Duke Math. J. 163 513–63).

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • Journal of Physics A Mathematical and Theoretical - View

Similar Works

Action Title Year Authors
+ A stationary model of non-intersecting directed polymers 2022 Guillaume Barraquand
Pierre Le Doussal
+ PDF Chat Weakly interacting diffusions on graphs 2020 Fabio Coppini
+ PDF Chat Evolution of states in a continuum migration model 2017 Yuri Kondratiev
Yuri Kozitsky
+ Survival probability and position distribution of a run and tumble particle in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> potential with an absorbing boundary 2024 Sujit Kumar Nath
Sanjib Sabhapandit
+ One-dimensional walks 2010 Gregory F. Lawler
Vlada Limic
+ Non-intersecting Random Processes and Multi-layer Random Polymers 2017 Mihai Nica
+ One-dimensional directed polymers in random potentials 2000 Viktor Dotsenko
+ Polymer models in complex media 2014 Nicolas Pétrélis
+ Non-directed polymers in heavy-tail random environment in dimension $d\geq 2$ 2021 Quentin Berger
Niccolò Torri
Ran Wei
+ PDF Chat The high-temperature behavior for the directed polymer in dimension $1+2$ 2017 Quentin Berger
Hubert Lacoin
+ PDF Chat Depinning transition of a directed polymer by a periodic potential: A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi></mml:math>-dimensional solution 1996 Stefano Galluccio
R Gräber
+ Evolution of states in a continuum migration model 2016 Yuri Kondratiev
Yuri Kozitsky
+ From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e19" altimg="si3.svg"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> dimensions 2019 Guanglin Rang
+ Random lattice walks in a Weyl chamber of type A or B and non-intersecting lattice paths 2009 Thomas Feierl
+ Stationary Self-Similar Extremal Processes and Random Semicontinuous Functions 1986 Wim Vervaat
+ Stationary Apollonian Packings 2015 Christian Hirsch
Gary W. Delaney
Volker Schmidt
+ Steady states of aggregating and fragmenting extended objects with size dependent diffusion 2001 Dibyendu Das
Bulbul Chakraborty
R. Rajesh
Mustansir Barma
Satya N. Majumdar
+ Gene Stanley, the n-vector model and random walks with absorbing boundaries 2002 Murray T. Batchelor
B. I. Henry
+ PDF Chat The crossing probability for directed polymers in random media 2015 Andrea De Luca
Pierre Le Doussal
+ Comportement coopératif dans des systèmes complexes 2009 Márton Karsai