A note on spectral multipliers on Engel and Cartan groups

Type: Article

Publication Date: 2021-09-22

Citations: 1

DOI: https://doi.org/10.1090/proc/15830

Abstract

The aim of this short note is to give examples of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript q"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">L^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounded spectral multipliers for operators involving left-invariant vector fields and their inverses, in the settings of Engel and Cartan groups. The interest in such examples lies in the fact that a group does not have to have flat co-adjoint orbits, and that the considered operator is not related to the usual sub-Laplacian. The discussed examples show how one can still obtain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript q"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">L^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> estimates for similar operators in such settings. As immediate consequences, one gets the corresponding Sobolev-type inequalities and heat kernel estimates.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • Ghent University Academic Bibliography (Ghent University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A note on spectral multipliers on Engel and Cartan groups 2021 M. Chatzakou
+ A note on spectral multipliers on Engel and Cartan groups 2021 Marianna Chatzakou
+ PDF Chat Spectral multipliers on Lie groups of polynomial growth 1994 Georgios Alexopoulos
+ On the 𝐿²→𝐿^{∞} norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups 1999 Adam Sikora
+ PDF Chat On 𝐿_{𝑝}-spectra of the laplacian on a Lie group with polynomial growth 1974 Andrzej Hulanicki
+ Weighted sub-Laplacians on Métivier groups: Essential self-adjointness and spectrum 2016 Tommaso Bruno
Mattia Calzi
+ Spectral multipliers for sub-Laplacians with drift on Lie groups 2005 Waldemar Hebisch
Giancarlo Mauceri
Stefano Meda
+ Remarks on spectra and 𝐿¹ multipliers for convolution operators 2005 Włodzimierz Ba̧k
Andrzej Hulanicki
+ PDF Chat Multiplier transformations on compact Lie groups and algebras 1974 Robert S. Strichartz
+ PDF Chat On $L_p$ Fourier Multipliers on a Compact Lie-Group. 1974 Lars Vretare
+ PDF Chat Multipliers vanishing at infinity for certain compact groups 1974 Alessandro Figà-Talamanca
+ Gradient estimates for fundamental solutions of a Schrödinger operator on stratified Lie groups 2023 Qingze Lin
Huayou Xie
+ PDF Chat Convolution operators on groups and multiplier theorems for Hermite and Laguerre expansions 1988 Jolanta Długosz
+ Adapted Fourier transform and Schwartz multipliers on nilpotent Lie groups 1995 Semi Dhieb
+ An estimate for a first-order Riesz operator on the affine group 1999 Peter Sjögren
+ PDF Chat A characterization of bi-invariant Schwartz space multipliers on nilpotent Lie groups 1989 Joe Jenkins
+ Multilinear Spectral Multipliers on Lie Groups of Polynomial Growth 2020 Jingxuan Fang
Hongbo Li
Jiman Zhao
+ A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions 2024 Alice Hedenlund
John Rognes
+ The spectrum of the Vladimirov sub-Laplacian on the compact Heisenberg group 2024 Juan Pablo Velasquez-Rodriguez
+ On Completely Bounded Multipliers of the Fourier Algebra A(G) 2008 Ana-Maria Popa