Active Learning for Domain Adaptation: An Energy-Based Approach

Type: Article

Publication Date: 2022-06-28

Citations: 58

DOI: https://doi.org/10.1609/aaai.v36i8.20850

View Chat PDF

Abstract

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of target data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at https://github.com/BIT-DA/EADA.

Locations

  • Proceedings of the AAAI Conference on Artificial Intelligence - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Active Learning for Domain Adaptation: An Energy-Based Approach 2021 Binhui Xie
Longhui Yuan
Shuang Li
Chi Harold Liu
Xinjing Cheng
Guoren Wang
+ PDF Chat Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation 2025 Zicheng Pan
Xiaohan Yu
Weichuan Zhang
Yongsheng Gao
+ PDF Chat Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings 2021 Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
+ Stochastic Adversarial Gradient Embedding for Active Domain Adaptation 2020 Victor Bouvier
Philippe Very
Clément Chastagnol
Myriam Tami
CĂ©line Hudelot
+ PDF Chat Learning Distinctive Margin toward Active Domain Adaptation 2022 Ming Xie
Yuxi Li
Yabiao Wang
Zekun Luo
Zhenye Gan
Zhongyi Sun
Mingmin Chi
Chengjie Wang
Pei Wang
+ Learning Distinctive Margin toward Active Domain Adaptation 2022 Ming Xie
Yuxi Li
Yabiao Wang
Zekun Luo
Zhenye Gan
Zhongyi Sun
Mingmin Chi
Chengjie Wang
Pei Wang
+ Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer 2023 Wenqiao Zhang
Zheqi Lv
Hao Zhou
Jiawei Liu
Juncheng Li
Mengze Li
Siliang Tang
Yueting Zhuang
+ PDF Chat Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence 2024 Mengyao Lyu
Tianxiang Hao
Xinhao Xu
Hui Chen
Zijia Lin
Jungong Han
Guiguang Ding
+ Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings 2020 Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
+ PDF Chat A3: Active Adversarial Alignment for Source-Free Domain Adaptation 2024 Chrisantus Eze
Christopher Crick
+ PDF Chat Active Adversarial Domain Adaptation 2020 Jong-Chyi Su
Yi–Hsuan Tsai
Kihyuk Sohn
Buyu Liu
Subhransu Maji
Manmohan Chandraker
+ Combating Label Distribution Shift for Active Domain Adaptation 2022 Sehyun Hwang
SoHyun Lee
Sung‐Yeon Kim
Jungseul Ok
Suha Kwak
+ Active Source Free Domain Adaptation 2022 Fan Wang
Zhongyi Han
Zhiyan Zhang
Yilong Yin
+ Active Adversarial Domain Adaptation 2019 Jong-Chyi Su
Yi–Hsuan Tsai
Kihyuk Sohn
Buyu Liu
Subhransu Maji
Manmohan Chandraker
+ Active Adversarial Domain Adaptation 2019 Jong-Chyi Su
Yi–Hsuan Tsai
Kihyuk Sohn
Buyu Liu
Subhransu Maji
Manmohan Chandraker
+ PDF Chat Discriminative active learning for domain adaptation 2021 Fan Zhou
Changjian Shui
Shichun Yang
Bincheng Huang
Boyu Wang
Brahim Chaib-draa
+ Discriminative Active Learning for Domain Adaptation 2020 Fan Zhou
Changjian Shui
Bincheng Huang
Boyu Wang
Brahim Chaib-draa
+ Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation 2023 Long Liu
Bo Zhou
Zhipeng Zhao
Zening Liu
+ Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey 2020 Sicheng Zhao
Bo Li
Colorado Reed
Pengfei Xu
Kurt Keutzer
+ Divide and Adapt: Active Domain Adaptation via Customized Learning 2023 Duojun Huang
Jichang Li
Weikai Chen
Junshi Huang
Zhenhua Chai
Guanbin Li

Cited by (15)

Action Title Year Authors
+ Generalized Universal Domain Adaptation with Generative Flow Networks 2023 Didi Zhu
Yinchuan Li
Yunfeng Shao
Jianye Hao
Fei Wu
Kun Kuang
Jun Xiao
Chao Wu
+ PDF Chat A comprehensive survey on deep active learning in medical image analysis 2024 Haoran Wang
Qiuye Jin
Shiman Li
Siyu Liu
Manning Wang
Zhijian Song
+ PDF Chat SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation 2023 Binhui Xie
Shuang Li
Mingjia Li
Chi Harold Liu
Gao Huang
Guoren Wang
+ PDF Chat Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation 2022 Binhui Xie
Longhui Yuan
Shuang Li
Chi Harold Liu
Xinjing Cheng
+ PDF Chat Bi3D: Bi-Domain Active Learning for Cross-Domain 3D Object Detection 2023 Jiakang Yuan
Bo Zhang
Xiangchao Yan
Tao Chen
Botian Shi
Yikang Li
Yu Qiao
+ PDF Chat Divide and Adapt: Active Domain Adaptation via Customized Learning 2023 Duojun Huang
Jichang Li
Weikai Chen
Junshi Huang
Zhenhua Chai
Guanbin Li
+ PDF Chat Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery 2023 Berkcan Ustun
Ahmet Kağan Kaya
Ezgi Cakir Ayerden
Fazil Altinel
+ PDF Chat Enabling Resource-Efficient AIoT System With Cross-Level Optimization: A Survey 2023 Sicong Liu
Bin Guo
Cheng Fang
Ziqi Wang
Shiyan Luo
Zimu Zhou
Zhiwen Yu
+ PDF Chat Domain Adversarial Active Learning for Domain Generalization Classification 2024 Jianting Chen
Ling Ding
Yunxiao Yang
Zaiyuan Di
Yang Xiang
+ PDF Chat Evidential Uncertainty Quantification: A Variance-Based Perspective 2024 Ruxiao Duan
Brian Caffo
Harrison X. Bai
Haris I. Sair
Craig Jones
+ PDF Chat A Comprehensive Survey on Source-Free Domain Adaptation 2024 Jingjing Li
Zhiqi Yu
Zhekai Du
Lei Zhu
Heng Tao Shen
+ PDF Chat Local Context-Aware Active Domain Adaptation 2023 Tao Sun
Cheng Lu
Haibin Ling
+ PDF Chat Energy-Based Domain-Adaptive Segmentation With Depth Guidance 2024 Jinjing Zhu
Zhedong Hu
Tae‐Kyun Kim
Lin Wang
+ PDF Chat Prior Knowledge Guided Unsupervised Domain Adaptation 2022 Tao Sun
Cheng Lu
Haibin Ling
+ PDF Chat Combating Label Distribution Shift for Active Domain Adaptation 2022 Sehyun Hwang
Sohyun Lee
Sungyeon Kim
Jungseul Ok
Suha Kwak

Citing (40)

Action Title Year Authors
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
+ PDF Chat A Kernel Method for the Two-Sample-Problem 2007 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Simultaneous Deep Transfer Across Domains and Tasks 2015 Eric Tzeng
Judy Hoffman
Trevor Darrell
Kate Saenko
+ PDF Chat The Cityscapes Dataset for Semantic Urban Scene Understanding 2016 Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
+ PDF Chat DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
+ PDF Chat Playing for Data: Ground Truth from Computer Games 2016 Stephan R. Richter
Vibhav Vineet
Stefan Roth
Vladlen Koltun
+ PDF Chat Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks 2017 Konstantinos Bousmalis
Nathan Silberman
David Dohan
Dumitru Erhan
Dilip Krishnan
+ PDF Chat Adversarial Discriminative Domain Adaptation 2017 Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
+ PDF Chat Deep Hashing Network for Unsupervised Domain Adaptation 2017 Hemanth Venkateswara
José Eusébio
Shayok Chakraborty
Sethuraman Panchanathan
+ Learning Algorithms for Active Learning 2017 Philip Bachman
Alessandro Sordoni
Adam Trischler
+ VisDA: The Visual Domain Adaptation Challenge 2017 Xingchao Peng
Ben Usman
Neela Kaushik
Judy Hoffman
Dequan Wang
Kate Saenko
+ Active Learning for Convolutional Neural Networks: A Core-Set Approach 2017 Ozan ƞener
Silvio Savarese
+ Conditional Adversarial Domain Adaptation 2017 Mingsheng Long
Zhangjie Cao
Jianmin Wang
Michael I. Jordan
+ Discriminative Active Learning 2019 Daniel Gissin
Shai Shalev‐Shwartz
+ Learning Algorithms for Active Learning 2017 Philip Bachman
Alessandro Sordoni
Adam Trischler
+ Deep Bayesian Active Learning with Image Data 2017 Yarin Gal
Riashat Islam
Zoubin Ghahramani
+ PDF Chat Maximum Classifier Discrepancy for Unsupervised Domain Adaptation 2018 Kuniaki Saito
Kohei Watanabe
Yoshitaka Ushiku
Tatsuya Harada
+ CyCADA: Cycle-Consistent Adversarial Domain Adaptation 2017 Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
+ PDF Chat Learning to Adapt Structured Output Space for Semantic Segmentation 2018 Yi–Hsuan Tsai
Wei-Chih Hung
Samuel Schulter
Kihyuk Sohn
Ming–Hsuan Yang
Manmohan Chandraker
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
+ Deep Transfer Learning with Joint Adaptation Networks 2016 Mingsheng Long
Zhu Han
Jianmin Wang
Michael I. Jordan
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
+ PDF Chat Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation 2019 Ruijia Xu
Guanbin Li
Jihan Yang
Liang Lin
+ PDF Chat Semi-Supervised Domain Adaptation via Minimax Entropy 2019 Kuniaki Saito
Donghyun Kim
Stan Sclaroff
Trevor Darrell
Kate Saenko
+ PDF Chat Variational Adversarial Active Learning 2019 Samrath Sinha
Sayna Ebrahimi
Trevor Darrell
+ PDF Chat Domain Conditioned Adaptation Network 2020 Shuang Li
Chi Liu
Qiuxia Lin
Binhui Xie
Zhengming Ding
Gao Huang
Jian Tang
+ PDF Chat Deep Residual Correction Network for Partial Domain Adaptation 2020 Shuang Li
Chi Harold Liu
Qiuxia Lin
Qi Wen
Limin Su
Gao Huang
Zhengming Ding
+ PDF Chat WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for Autonomous Driving 2019 Senthil Yogamani
CiarĂĄn Hughes
Jonathan Horgan
Ganesh Sistu
Sumanth Chennupati
Michal Uƙičáƙ
Stefan Milz
MartĂ­n SimĂłn
Karl Amende
Christian Witt
+ PDF Chat Active Adversarial Domain Adaptation 2020 Jong-Chyi Su
Yi–Hsuan Tsai
Kihyuk Sohn
Buyu Liu
Subhransu Maji
Manmohan Chandraker
+ Deep Active Learning: Unified and Principled Method for Query and Training 2019 Changjian Shui
Fan Zhou
Christian Gagné
Boyu Wang
+ Energy-based Out-of-distribution Detection 2020 Weitang Liu
Xiaoyun Wang
John D. Owens
Yixuan Li
+ Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation 2020 Guoliang Kang
Yunchao Wei
Yi Yang
Yueting Zhuang
Alexander G. Hauptmann
+ Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation 2020 Guoliang Kang
Yunchao Wei
Yi Yang
Yueting Zhuang
Alexander G. Hauptmann
+ Discrepancy-Based Active Learning for Domain Adaptation 2021 Antoine de Mathelin
François Deheeger
Mathilde Mougeot
Nicolas Vayatis
+ PDF Chat Bi-Classifier Determinacy Maximization for Unsupervised Domain Adaptation 2021 Shuang Li
Fangrui Lv
Binhui Xie
Chi Harold Liu
Jian Liang
Chen Qin
+ PDF Chat Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings 2021 Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
+ PDF Chat Transferable Semantic Augmentation for Domain Adaptation 2021 Shuang Li
Mixue Xie
Kaixiong Gong
Chi Harold Liu
Yulin Wang
Wei Li
+ PDF Chat Transferable Semantic Augmentation for Domain Adaptation 2021 Shuang Li
Mixue Xie
Kaixiong Gong
Chi Harold Liu
Yulin Wang
Wei Li
+ Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One 2019 Will Grathwohl
Kuan-Chieh Wang
Jörn-Henrik Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky