Symmetries of complex analytic vector fields with an essential singularity on the Riemann sphere

Type: Article

Publication Date: 2021-10-01

Citations: 1

DOI: https://doi.org/10.1515/advgeom-2021-0002

Abstract

Abstract We consider the family ℰ ( s , r , d ) of all singular complex analytic vector fields <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>X</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mi>P</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mfrac> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>E</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:msup> <m:mfrac> <m:mo>∂</m:mo> <m:mrow> <m:mo>∂</m:mo> <m:mi>z</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:math> $X(z)=\frac{Q(z)}{P(z)}{{e}^{E(z)}}\frac{\partial }{\partial z}$ on the Riemann sphere where Q , P , ℰ are polynomials with deg Q = s , deg P = r and deg ℰ = d ≥ 1. Using the pullback action of the affine group Aut(ℂ) and the divisors for X , we calculate the isotropy groups Aut(ℂ) X of discrete symmetries for X ∈ ℰ ( s , r , d ). The subfamily ℰ ( s , r , d ) id of those X with trivial isotropy group in Aut(ℂ) is endowed with a holomorphic trivial principal Aut(ℂ)-bundle structure. A necessary and sufficient arithmetic condition on s , r , d ensuring the equality ℰ ( s , r , d ) = ℰ ( s , r , d ) id is presented. Moreover, those X ∈ ℰ ( s , r , d ) \ ℰ ( s , r , d ) id with non-trivial isotropy are realized. This yields explicit global normal forms for all X ∈ ℰ ( s , r , d ). A natural dictionary between analytic tensors, vector fields, 1-forms, orientable quadratic differentials and functions on Riemann surfaces M is extended as follows. In the presence of nontrivial discrete symmetries Γ &lt; Aut( M ), the dictionary describes the correspondence between Γ -invariant tensors on M and tensors on M / Γ .

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Advances in Geometry - View

Similar Works

Action Title Year Authors
+ Symmetries of complex analytic vector fields with an essential singularity on the Riemann sphere 2019 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
+ Geometry of transcendental singularities of complex analytic functions and vector fields 2024 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
+ PDF Chat Dynamics of singular complex analytic vector fields with essential singularities I 2017 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
+ Complex analytic geometry in a nonstandard setting 2008 Ya’acov Peterzil
Sergei Starchenko
+ PDF Chat A Class of Special Hypersurfaces in Real Space Forms 2016 Yan Zhao
Ximin Liu
+ Surfaces with Central Configuration and Dulac’s Problem for a Three Dimensional Isolated Hopf Singularity 2024 Nuria Corral
María Martín-Vega
Fernando Sanz
+ On the geometry, flows and visualization of singular complex analytic vector fields on Riemann surfaces 2018 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
Selene Solorza-Calderón
C. Yee-Romero
+ Real hypersurfaces of non-flat complex space forms with two generalized conditions on the Jacobi structure operator 2021 Theoharis Theofanidis
+ PDF Chat The multiplicity of isolated two-dimensional hypersurface singularities 1987 Henry B. Laufer
+ Singularities of 3D vector fields preserving the Martinet form 2024 Stavros Anastassiou
+ Simple singularity of type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e21" altimg="si3.svg"><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:math> and the complex reflection group ST34 2024 Jiro Sekiguchi
+ Singular Points of Vector Fields in the Real and Complex Planes 1988 D. V. Anosov
Vladimir I. Arnold
+ A {̄∂}∂–Poincaré lemma for forms near an isolated complex singularity 2003 Adam Harris
Yoshihiro Tonegawa
+ Dynamics of singular complex analytic vector fields with essential singularities II 2019 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
+ Parametrization of local CR automorphisms by finite jets and applications 2006 Bernhard Lamel
Nordine Mir
+ PDF Chat The analytic properties of $G\sb{2n}$ spaces 1972 Donald O. Koehler
+ PDF Chat Dynamics of singular complex analytic vector fields with essential singularities II 2022 Alvaro Alvarez–Parrilla
Jesús Muciño–Raymundo
+ Kinematic singularities and macdowell symmetry 1968 W. E. A. Davies
+ Generic complex vector fields in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> 2008 Anbo Le
+ PDF Chat A characterization of complex hypersurfaces in 𝐶^{𝑚} 1989 Marcos Dajczer