Type: Article
Publication Date: 2021-10-01
Citations: 1
DOI: https://doi.org/10.1515/advgeom-2021-0002
Abstract We consider the family ℰ ( s , r , d ) of all singular complex analytic vector fields <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>X</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mi>P</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mfrac> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>E</m:mi> <m:mo stretchy="false">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:msup> <m:mfrac> <m:mo>∂</m:mo> <m:mrow> <m:mo>∂</m:mo> <m:mi>z</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:math> $X(z)=\frac{Q(z)}{P(z)}{{e}^{E(z)}}\frac{\partial }{\partial z}$ on the Riemann sphere where Q , P , ℰ are polynomials with deg Q = s , deg P = r and deg ℰ = d ≥ 1. Using the pullback action of the affine group Aut(ℂ) and the divisors for X , we calculate the isotropy groups Aut(ℂ) X of discrete symmetries for X ∈ ℰ ( s , r , d ). The subfamily ℰ ( s , r , d ) id of those X with trivial isotropy group in Aut(ℂ) is endowed with a holomorphic trivial principal Aut(ℂ)-bundle structure. A necessary and sufficient arithmetic condition on s , r , d ensuring the equality ℰ ( s , r , d ) = ℰ ( s , r , d ) id is presented. Moreover, those X ∈ ℰ ( s , r , d ) \ ℰ ( s , r , d ) id with non-trivial isotropy are realized. This yields explicit global normal forms for all X ∈ ℰ ( s , r , d ). A natural dictionary between analytic tensors, vector fields, 1-forms, orientable quadratic differentials and functions on Riemann surfaces M is extended as follows. In the presence of nontrivial discrete symmetries Γ < Aut( M ), the dictionary describes the correspondence between Γ -invariant tensors on M and tensors on M / Γ .
Action | Title | Year | Authors |
---|---|---|---|
+ | Geometry of transcendental singularities of complex analytic functions and vector fields | 2024 |
Alvaro Alvarez–Parrilla Jesús Muciño–Raymundo |