Deep Reinforcement Learning at the Edge of the Statistical Precipice

Type: Preprint

Publication Date: 2021-08-30

Citations: 0

View

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Deep Reinforcement Learning at the Edge of the Statistical Precipice 2021 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ Deep Reinforcement Learning at the Edge of the Statistical Precipice 2021 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ Deep Reinforcement Learning that Matters 2017 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+ Deep Reinforcement Learning That Matters 2017 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+ PDF Chat Deep Reinforcement Learning That Matters 2018 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+ A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots 2019 Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+ A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots 2019 Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+ Behaviour Suite for Reinforcement Learning 2019 Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepesvári
Satinder Singh
+ Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field 2019 Marin Toromanoff
Émilie Wirbel
Fabien Moutarde
+ rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch 2019 Adam Stooke
Pieter Abbeel
+ Behaviour Suite for Reinforcement Learning 2020 Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepezvari
Satinder Singh
+ Behaviour Suite for Reinforcement Learning 2019 Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepesvári
Satinder Singh
+ CORL: Research-oriented Deep Offline Reinforcement Learning Library 2022 Denis Tarasov
Alexander Nikulin
D. Akimov
Vladislav Kurenkov
С. В. Колесников
+ Assessing Generalization in Deep Reinforcement Learning 2018 Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
+ AdaStop: sequential testing for efficient and reliable comparisons of Deep RL Agents 2023 Timothée Mathieu
Riccardo Della Vecchia
Alena Shilova
Matheus Medeiros
Hector Kohler
Odalric-Ambrym Maillard
Pierre‐Marie Preux
+ D4RL: Datasets for Deep Data-Driven Reinforcement Learning 2020 Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
+ The Primacy Bias in Deep Reinforcement Learning 2022 Evgenii Nikishin
Max Schwarzer
Pierluca D’Oro
Pierre‐Luc Bacon
Aaron Courville
+ An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents 2018 Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+ An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents 2018 Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+ rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch. 2019 Adam Stooke
Pieter Abbeel

Cited by (0)

Action Title Year Authors

Citing (67)

Action Title Year Authors
+ On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other 1947 H. B. Mann
Douglas R. Whitney
+ THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED 1947 B. L. Welch
+ Resampling Fewer Than n Observations: Gains, Losses, and Remedies for Losses 2011 Peter J. Bickel
Friedrich Götze
W. R. van Zwet
+ PDF Chat Bootstrap Methods: Another Look at the Jackknife 1979 B. Efron
+ Better Bootstrap Confidence Intervals 1987 Bradley Efron
+ PDF Chat Benchmarking optimization software with performance profiles 2002 Elizabeth D. Dolan
Jorge J. Morè
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+ PDF Chat Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations 2016 Sander Greenland
Stephen Senn
Kenneth J. Rothman
John B. Carlin
Charles Poole
Steven N. Goodman
Douglas G. Altman
+ Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017 Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
+ Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control 2017 Riashat Islam
Peter Henderson
Maziar Gomrokchi
Doina Precup
+ Simple random search provides a competitive approach to reinforcement learning 2018 Horia Mania
Aurelia Guy
Benjamin Recht
+ PDF Chat Statistical Rituals: The Replication Delusion and How We Got There 2018 Gerd Gigerenzer
+ How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments 2018 Cédric Colas
Olivier Sigaud
Pierre‐Yves Oudeyer
+ Deterministic Implementations for Reproducibility in Deep Reinforcement Learning 2018 Prabhat Nagarajan
Garrett Warnell
Peter Stone
+ Dopamine: A Research Framework for Deep Reinforcement Learning 2018 Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
+ Go-Explore: a New Approach for Hard-Exploration Problems 2019 Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
+ Catalyst.RL: A Distributed Framework for Reproducible RL Research 2019 Sergey Kolesnikov
Oleksii Hrinchuk
+ Model-Based Reinforcement Learning for Atari 2019 Łukasz Kaiser
Mohammad Babaeizadeh
Piotr Miłoś
Błażej Osiński
Roy H. Campbell
Konrad Czechowski
Dumitru Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
+ PDF Chat A Hitchhiker's Guide to Statistical Comparisons of Reinforcement Learning Algorithms 2019 Cédric Colas
Olivier Sigaud
Pierre‐Yves Oudeyer
+ Let's Play Again: Variability of Deep Reinforcement Learning Agents in Atari Environments 2019 Kaleigh Clary
Emma Tosch
John Foley
David Jensen
+ PDF Chat Abandon Statistical Significance 2019 Blakeley B. McShane
David Gal
Andrew Gelman
Christian P. Robert
Jennifer L. Tackett
+ Reinforcement Learning with Unsupervised Auxiliary Tasks 2016 Max Jaderberg
Volodymyr Mnih
Wojciech Marian Czarnecki
Tom Schaul
Joel Z. Leibo
David Silver
Koray Kavukcuoglu
+ Implicit Quantile Networks for Distributional Reinforcement Learning 2018 Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
+ Deep Reinforcement Learning That Matters 2017 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+ PDF Chat Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
+ Distributional Reinforcement Learning With Quantile Regression 2017 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
+ Are GANs Created Equal? A Large-Scale Study 2017 Mario Lučić
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
+ PDF Chat Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging 2017 Nils Reimers
Iryna Gurevych
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
+ Rainbow: Combining Improvements in Deep Reinforcement Learning 2017 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Daniel Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
+ Unsupervised Learning of Object Keypoints for Perception and Control 2019 Tejas D. Kulkarni
Ankush Gupta
Catalin Ionescu
Sebastian Borgeaud
Malcolm Reynolds
Andrew Zisserman
Volodymyr Mnih
+ Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field 2019 Marin Toromanoff
Émilie Wirbel
Fabien Moutarde
+ Improving Sample Efficiency in Model-Free Reinforcement Learning from Images 2019 Denis Yarats
Amy Zhang
Ilya Kostrikov
Brandon Amos
Joëlle Pineau
Rob Fergus
+ A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots 2019 Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+ Fast Task Inference with Variational Intrinsic Successor Features 2019 Steven Hansen
Will Dabney
André Barreto
Tom Van de Wiele
David Warde-Farley
Volodymyr Mnih
+ Dream to Control: Learning Behaviors by Latent Imagination 2019 Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+ Dota 2 with Large Scale Deep Reinforcement Learning 2019 Christopher Berner
Greg Brockman
Brooke Chan
Vicki Cheung
Przemyslaw Debiak
Christy Dennison
David Farhi
Quirin Fischer
Shariq Hashme
Christopher Hesse
+ Measuring the Reliability of Reinforcement Learning Algorithms 2020 Stephanie C. Y. Chan
Anoop Korattikara
Sam Fishman
John Canny
Sergio Guadarrama
+ Do recent advancements in model-based deep reinforcement learning really improve data efficiency? 2019 Kacper Kielak