Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
,
Max Schwarzer
,
Pablo Samuel Castro
,
Aaron Courville
,
Marc G. Bellemare
Type:
Preprint
Publication Date:
2021-08-30
Citations:
0
View
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Deep Reinforcement Learning at the Edge of the Statistical Precipice
2021
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+
Deep Reinforcement Learning at the Edge of the Statistical Precipice
2021
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+
Deep Reinforcement Learning that Matters
2017
Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+
Deep Reinforcement Learning That Matters
2017
Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+
PDF
Chat
Deep Reinforcement Learning That Matters
2018
Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+
A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots
2019
Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+
A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots
2019
Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+
Behaviour Suite for Reinforcement Learning
2019
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepesvári
Satinder Singh
+
Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field
2019
Marin Toromanoff
Émilie Wirbel
Fabien Moutarde
+
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
2019
Adam Stooke
Pieter Abbeel
+
Behaviour Suite for Reinforcement Learning
2020
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepezvari
Satinder Singh
+
Behaviour Suite for Reinforcement Learning
2019
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
André Saraiva
Katrina McKinney
Tor Lattimore
Csaba Szepesvári
Satinder Singh
+
CORL: Research-oriented Deep Offline Reinforcement Learning Library
2022
Denis Tarasov
Alexander Nikulin
D. Akimov
Vladislav Kurenkov
С. В. Колесников
+
Assessing Generalization in Deep Reinforcement Learning
2018
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
+
AdaStop: sequential testing for efficient and reliable comparisons of Deep RL Agents
2023
Timothée Mathieu
Riccardo Della Vecchia
Alena Shilova
Matheus Medeiros
Hector Kohler
Odalric-Ambrym Maillard
Pierre‐Marie Preux
+
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
2020
Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
+
The Primacy Bias in Deep Reinforcement Learning
2022
Evgenii Nikishin
Max Schwarzer
Pierluca D’Oro
Pierre‐Luc Bacon
Aaron Courville
+
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents
2018
Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents
2018
Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch.
2019
Adam Stooke
Pieter Abbeel
Cited by (0)
Action
Title
Year
Authors
Citing (67)
Action
Title
Year
Authors
+
On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other
1947
H. B. Mann
Douglas R. Whitney
+
THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED
1947
B. L. Welch
+
Resampling Fewer Than n Observations: Gains, Losses, and Remedies for Losses
2011
Peter J. Bickel
Friedrich Götze
W. R. van Zwet
+
PDF
Chat
Bootstrap Methods: Another Look at the Jackknife
1979
B. Efron
+
Better Bootstrap Confidence Intervals
1987
Bradley Efron
+
PDF
Chat
Benchmarking optimization software with performance profiles
2002
Elizabeth D. Dolan
Jorge J. Morè
+
Continuous control with deep reinforcement learning
2015
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+
PDF
Chat
Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations
2016
Sander Greenland
Stephen Senn
Kenneth J. Rothman
John B. Carlin
Charles Poole
Steven N. Goodman
Douglas G. Altman
+
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
2017
Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
+
Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
2017
Riashat Islam
Peter Henderson
Maziar Gomrokchi
Doina Precup
+
Simple random search provides a competitive approach to reinforcement learning
2018
Horia Mania
Aurelia Guy
Benjamin Recht
+
PDF
Chat
Statistical Rituals: The Replication Delusion and How We Got There
2018
Gerd Gigerenzer
+
How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments
2018
Cédric Colas
Olivier Sigaud
Pierre‐Yves Oudeyer
+
Deterministic Implementations for Reproducibility in Deep Reinforcement Learning
2018
Prabhat Nagarajan
Garrett Warnell
Peter Stone
+
Dopamine: A Research Framework for Deep Reinforcement Learning
2018
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
+
Go-Explore: a New Approach for Hard-Exploration Problems
2019
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
+
Catalyst.RL: A Distributed Framework for Reproducible RL Research
2019
Sergey Kolesnikov
Oleksii Hrinchuk
+
Model-Based Reinforcement Learning for Atari
2019
Łukasz Kaiser
Mohammad Babaeizadeh
Piotr Miłoś
Błażej Osiński
Roy H. Campbell
Konrad Czechowski
Dumitru Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
+
PDF
Chat
A Hitchhiker's Guide to Statistical Comparisons of Reinforcement Learning Algorithms
2019
Cédric Colas
Olivier Sigaud
Pierre‐Yves Oudeyer
+
Let's Play Again: Variability of Deep Reinforcement Learning Agents in Atari Environments
2019
Kaleigh Clary
Emma Tosch
John Foley
David Jensen
+
PDF
Chat
Abandon Statistical Significance
2019
Blakeley B. McShane
David Gal
Andrew Gelman
Christian P. Robert
Jennifer L. Tackett
+
Reinforcement Learning with Unsupervised Auxiliary Tasks
2016
Max Jaderberg
Volodymyr Mnih
Wojciech Marian Czarnecki
Tom Schaul
Joel Z. Leibo
David Silver
Koray Kavukcuoglu
+
Implicit Quantile Networks for Distributional Reinforcement Learning
2018
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
+
Deep Reinforcement Learning That Matters
2017
Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
+
PDF
Chat
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
2018
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
+
Distributional Reinforcement Learning With Quantile Regression
2017
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
+
Are GANs Created Equal? A Large-Scale Study
2017
Mario Lučić
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
+
PDF
Chat
Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging
2017
Nils Reimers
Iryna Gurevych
+
Asynchronous Methods for Deep Reinforcement Learning
2016
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
+
Rainbow: Combining Improvements in Deep Reinforcement Learning
2017
Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Daniel Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
+
Unsupervised Learning of Object Keypoints for Perception and Control
2019
Tejas D. Kulkarni
Ankush Gupta
Catalin Ionescu
Sebastian Borgeaud
Malcolm Reynolds
Andrew Zisserman
Volodymyr Mnih
+
Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field
2019
Marin Toromanoff
Émilie Wirbel
Fabien Moutarde
+
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images
2019
Denis Yarats
Amy Zhang
Ilya Kostrikov
Brandon Amos
Joëlle Pineau
Rob Fergus
+
A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots
2019
Nicolai A. Lynnerup
Laura Nolling
Rasmus Hasle
John Hallam
+
Fast Task Inference with Variational Intrinsic Successor Features
2019
Steven Hansen
Will Dabney
André Barreto
Tom Van de Wiele
David Warde-Farley
Volodymyr Mnih
+
Dream to Control: Learning Behaviors by Latent Imagination
2019
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+
Dota 2 with Large Scale Deep Reinforcement Learning
2019
Christopher Berner
Greg Brockman
Brooke Chan
Vicki Cheung
Przemyslaw Debiak
Christy Dennison
David Farhi
Quirin Fischer
Shariq Hashme
Christopher Hesse
+
Measuring the Reliability of Reinforcement Learning Algorithms
2020
Stephanie C. Y. Chan
Anoop Korattikara
Sam Fishman
John Canny
Sergio Guadarrama
+
Do recent advancements in model-based deep reinforcement learning really improve data efficiency?
2019
Kacper Kielak