Learning to Recover 3D Scene Shape from a Single Image

Type: Article

Publication Date: 2021-06-01

Citations: 139

DOI: https://doi.org/10.1109/cvpr46437.2021.00027

Abstract

Despite significant progress in monocular depth estimation in the wild, recent state-of-the-art methods cannot be used to recover accurate 3D scene shape due to an unknown depth shift induced by shift-invariant reconstruction losses used in mixed-data depth prediction training, and possible unknown camera focal length. We investigate this problem in detail, and propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image, and then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape. In addition, we propose an image-level normalized regression loss and a normal-based geometry loss to enhance depth prediction models trained on mixed datasets. We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot dataset generalization. Code is available at: https://git.io/Depth

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ Learning to Recover 3D Scene Shape from a Single Image 2020 Wei Yin
Jianming Zhang
Oliver Wang
Simon Niklaus
Long Mai
Simon Chen
Chunhua Shen
+ Towards Accurate Reconstruction of 3D Scene Shape from A Single Monocular Image 2022 Wei Yin
Jianming Zhang
Oliver Wang
Simon Nicklaus
Simon Chen
Yifan Liu
Chunhua Shen
+ Robust Geometry-Preserving Depth Estimation Using Differentiable Rendering 2023 Chi Zhang
Wei Yin
Gang Yu
Zhibin Wang
Tao Chen
Bin Fu
Joey Tianyi Zhou
Chunhua Shen
+ PDF Chat Robust Geometry-Preserving Depth Estimation Using Differentiable Rendering 2023 Chi Zhang
Wei Yin
Gang Yu
Zhibin Wang
Tao Chen
Bin Fu
Joey Tianyi Zhou
Chunhua Shen
+ Towards 3D Scene Reconstruction from Locally Scale-Aligned Monocular Video Depth 2022 Guangkai Xu
Wei Yin
Hao Chen
Kai Cheng
Feng Zhao
Chunhua Shen
+ PDF Chat MoGe: Unlocking Accurate Monocular Geometry Estimation for Open-Domain Images with Optimal Training Supervision 2024 Ruicheng Wang
Sicheng Xu
Chenggang Dai
Jianfeng Xiang
Yu Deng
Xin Tong
Jiaolong Yang
+ PDF Chat FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models 2023 Guangkai Xu
Wei Yin
Hao Chen
Chunhua Shen
Kai Cheng
Feng Zhao
+ FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models 2023 Guangkai Xu
Wei Yin
Hao Chen
Chunhua Shen
Kai Cheng
Feng Zhao
+ PDF Chat Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust Depth Prediction 2021 Wei Yin
Yifan Liu
Chunhua Shen
+ Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust Depth Prediction 2021 Wei Yin
Yifan Liu
Chunhua Shen
+ DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data 2020 Wei Yin
Xinlong Wang
Chunhua Shen
Yifan Liu
Zhi Tian
Songcen Xu
Changming Sun
Dou Renyin
+ PDF Chat Survey on Monocular Metric Depth Estimation 2025 Jiuling Zhang
+ PDF Chat UniDepth: Universal Monocular Metric Depth Estimation 2024 Luigi Piccinelli
Yung-Hsu Yang
Christos Sakaridis
Mattia Segù
Siyuan Li
Luc Van Gool
Fisher Yu
+ PDF Chat Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image 2023 Wei Yin
Chi Zhang
Hao Chen
Zhipeng Cai
Gang Yu
Kaixuan Wang
Xiaozhi Chen
Chunhua Shen
+ Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image 2023 Wei Yin
Chi Zhang
Hao Chen
Zhipeng Cai
Gang Yu
Kaixuan Wang
Xiaozhi Chen
Chunhua Shen
+ PDF Chat Depth Estimation From Monocular Images With Enhanced Encoder-Decoder Architecture 2024 Debayan Das
Ajay Das
Farhan Sadaf
+ Towards General Purpose Geometry-Preserving Single-View Depth Estimation 2020 М.С. Романов
Nikolay Patatkin
Анна Воронцова
Sergey Nikolenko
Anton Konushin
Dmitry Senyushkin
+ PDF Chat Self-supervised Pretraining and Finetuning for Monocular Depth and Visual Odometry 2024 Boris Chidlovskii
Leonid Antsfeld
+ Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction 2020 Yichao Zhou
Shichen Liu
Yi Ma
+ High Quality Monocular Depth Estimation via Transfer Learning 2018 Ibraheem Alhashim
Peter Wonka

Works That Cite This (65)

Action Title Year Authors
+ PDF Chat On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks 2023 Hyunjun Jung
Patrick Ruhkamp
Guangyao Zhai
Nikolas Brasch
Yitong Li
Yannick Verdié
Jifei Song
Yiren Zhou
Anil Armagan
Slobodan Ilić
+ PDF Chat MultiMAE: Multi-modal Multi-task Masked Autoencoders 2022 Roman Bachmann
David Mizrahi
Andrei Atanov
Amir Zamir
+ PDF Chat Consistent Multimodal Generation via A Unified GAN Framework 2024 Zhu Zhen
Yijun Li
Weijie Lyu
Krishna Kumar Singh
Zhixin Shu
Sören Pirk
Derek Hoiem
+ PDF Chat Improving Monocular Visual Odometry Using Learned Depth 2022 Libo Sun
Wei Yin
Enze Xie
Zhengrong Li
Changming Sun
Chunhua Shen
+ PDF Chat Improving Equivariance in State-of-the-Art Supervised Depth and Normal Predictors 2023 Yuanyi Zhong
Anand Bhattad
Yu-Xiong Wang
David Forsyth
+ PDF Chat Generic Perceptual Loss for Modeling Structured Output Dependencies 2021 Yifan Liu
Hao Chen
Yu Chen
Wei Yin
Chunhua Shen
+ PDF Chat SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image 2022 Dejia Xu
Yifan Jiang
Peihao Wang
Zhiwen Fan
Humphrey Shi
Shuicheng Yan
+ MACARONS: Mapping and Coverage Anticipation with RGB Online Self-Supervision 2023 Antoine Guédon
Tom Monnier
Pascal Monasse
Vincent Lepetit
+ PDF Chat SC-DepthV3: Robust Self-Supervised Monocular Depth Estimation for Dynamic Scenes 2023 Libo Sun
Jia-Wang Bian
Huangying Zhan
Wei Yin
Ian Reid
Chunhua Shen
+ Unsupervised Scale-consistent Depth Learning from Video 2021 Jia-Wang Bian
Huangying Zhan
Naiyan Wang
Zhichao Li
Le Zhang
Chunhua Shen
Ming‐Ming Cheng
Ian Reid