Type: Article
Publication Date: 2020-01-01
Citations: 2
DOI: https://doi.org/10.1515/math-2020-0116
Abstract For a finitely generated tensor norm <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha , we investigate the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -approximation property ( <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -AP) and the bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -approximation property (bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -AP) in terms of some approximation properties of operator ideals. We prove that a Banach space X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> {\alpha }_{p,q} -AP <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mo stretchy="false">(</m:mo> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>q</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> <m:mo stretchy="false">)</m:mo> </m:math> (1\le p,q\le \infty ,1/p+1/q\ge 1) if it has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {g}_{p} -AP. As a consequence, it follows that if a Banach space X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {g}_{p} -AP, then X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>w</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {w}_{p} -AP.
Action | Title | Year | Authors |
---|---|---|---|
+ | Maximal Ideals of Generalized Summing Linear Operators | 2024 |
Geraldo Botelho Jamilson R. Campos Lucas Nascimento |
+ PDF Chat | Some Generalized Versions of Chevet–Saphar Tensor Norms | 2022 |
Ju Myung Kim |