Approximation properties of tensor norms and operator ideals for Banach spaces

Type: Article

Publication Date: 2020-01-01

Citations: 2

DOI: https://doi.org/10.1515/math-2020-0116

Abstract

Abstract For a finitely generated tensor norm <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha , we investigate the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -approximation property ( <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -AP) and the bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -approximation property (bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> </m:math> \alpha -AP) in terms of some approximation properties of operator ideals. We prove that a Banach space X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> {\alpha }_{p,q} -AP <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mo stretchy="false">(</m:mo> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>q</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> <m:mo stretchy="false">)</m:mo> </m:math> (1\le p,q\le \infty ,1/p+1/q\ge 1) if it has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {g}_{p} -AP. As a consequence, it follows that if a Banach space X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {g}_{p} -AP, then X has the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -bounded <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>w</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msub> </m:math> {w}_{p} -AP.

Locations

  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Open Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces 2001 Klaus Floret
Stephan Hunfeld
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$p$"><mml:mi>p</mml:mi></mml:math>-representable operators in Banach spaces 1986 Roshdi Khalil
+ PDF Chat Banach spaces which are 𝑀-ideals in their biduals 1984 Peter Harmand
Åsvald Lima
+ PDF Chat Ideals of regular operators on 𝑙² 1983 Wolfgang Arendt
A. R. Sourour
+ PDF Chat Operator ideals and tensor norms defined by a sequence space 2004 Juan Antonio López Molina
M. J. Rivera
+ PDF Chat Classification of Ideals in Banach Spaces 2023 Wanjala Patrick Makila
Ojiema Michael Onyango
Simiyu Achiles Nyongesa
+ The Duality between Ideals of Multilinear Operators and Tensor Norms 2018 Samuel García-Hernández
+ The Duality between Ideals of Multilinear Operators and Tensor Norms 2018 Samuel García-Hernández
+ PDF Chat Structure of Banach algebras 𝐴 satisfying 𝐴𝑥²=𝐴𝑥 for every 𝑥∈𝐴 1986 Jean Esterlé
M. Oudadess
+ Weaker relatives of the bounded approximation property for a Banach operator ideal 2014 Silvia Lassalle
Eve Oja
Pablo Turco
+ Weaker relatives of the bounded approximation property for a Banach operator ideal 2014 Silvia Lassalle
Eve Oja
Pablo Turco
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>-Smooth Points in Some Banach Spaces 2015 Abdulkareem Saleh Hamarsheh
+ PDF Chat <i>m</i>-Isometric tensor products 2023 Bhagawati Prashad Duggal
In Hyoun Kim
+ SOME RESULTS OF THE -APPROXIMATION PROPERTY FOR BANACH SPACES 2018 Ju Myung Kim
+ Norm estimates for operators from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>ℓ</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> 2008 Óscar Blasco
+ Ideal norms and operator ideals 1998 Albrecht Pietsch
Jörg Wenzel
+ Weaker relatives of the bounded approximation property for a Banach operator ideal 2016 Silvia Lassalle
Eve Oja
Pablo Turco
+ PDF Chat The Improvement on the Boundedness and Norm of a Class of Integral Operators onLpSpace 2015 Lifang Zhou
Jin Lu
+ Compactness and an approximation property related to an operator ideal 2012 Anil Kumar Karn
D. P. Sinha
+ Some Thoughts on Approximation Properties 2014 O. I. Reinov