Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small

Type: Preprint

Publication Date: 2020-12-15

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ PDF Chat Large subsets of $$\mathbb {Z}_m^n$$ without arithmetic progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob Führer
+ PDF Chat Large sets with small doubling modulo p are well covered by an arithmetic progression 2009 Oriol Serra
Gilles Zémor
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant
+ Effective Bounds for Restricted $3$-Arithmetic Progressions in $\mathbb{F}_p^n$ 2023 Amey Bhangale
Subhash Khot
Dor Minzer
+ Four-term progression free sets with three-term progressions in all large subsets 2019 Cosmin Pohoata
Oliver Roche‐Newton
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ PDF Chat Bounds on the size of Progression-Free Sets in ℤ<i> <sub>m</sub> <sup>n</sup> </i> 2022 Péter Pál Pach

Works That Cite This (0)

Action Title Year Authors