Partial associativity and rough approximate groups

Type: Article

Publication Date: 2020-11-08

Citations: 8

DOI: https://doi.org/10.1007/s00039-020-00553-1

Abstract

Abstract Suppose that a binary operation $$\circ $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>∘</mml:mo> </mml:math> on a finite set X is injective in each variable separately and also associative. It is easy to prove that $$(X,\circ )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mo>∘</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> must be a group. In this paper we examine what happens if one knows only that a positive proportion of the triples $$(x,y,z)\in X^3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>X</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:math> satisfy the equation $$x\circ (y\circ z)=(x\circ y)\circ z$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∘</mml:mo> <mml:mo>(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>∘</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>∘</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> <mml:mo>∘</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:math> . Other results in additive combinatorics would lead one to expect that there must be an underlying ‘group-like’ structure that is responsible for the large number of associative triples. We prove that this is indeed the case: there must be a proportional-sized subset of the multiplication table that approximately agrees with part of the multiplication table of a metric group. A recent result of Green shows that this metric approximation is necessary: it is not always possible to obtain a proportional-sized subset that agrees with part of the multiplication table of a group.

Locations

  • Geometric and Functional Analysis - View - PDF

Similar Works

Action Title Year Authors
+ Partial associativity and rough approximate groups 2019 W. T. Gowers
Jason Long
+ On weak commutativity in 𝑝-groups 2023 Raimundo Bastos
Emerson de Melo
R. de Oliveira
Carmine Monetta
+ Partially ordered groups 1992 Gerard J. Murphy
+ Groups described by element numbers 2013 Hermann Heineken
Francesco G. Russo
+ PDF Chat Partial group algebras 2017
+ Associativity and Binary Group Structures 2013 Turner Pepper
Jason Veenendaal
+ Functional Representation of Partially Ordered Groups 1956 Isidore Fleischer
+ Weak associativity and quasigroup units 2019 Aleksandar Krapež
+ A generalization of weak commutativity between two isomorphic groups 2016 Bruno César Rodrigues Lima
Said N. Sidki
+ PDF Chat Locally partially ordered groups 1993 Julius Röll
+ Results in partially ordered groups 1975 A. M. W. Glass
+ PDF Chat Right-partially ordered groups 1980 H. Mitsch
+ Disjoint subsets of a partially ordered group 1969 Ján Jakubík
+ PDF Chat Multinorms and Approximate Amenability of Weighted Group Algebras 2014 Saman Ghaderkhani
+ Weak associativity and restricted rotation 2009 Jean Marcel Pallo
+ PDF Chat A constructive approach to accessible group classes 2021 Francesco de Giovanni
Marco Trombetti
+ The extension of partially ordered groups 1950 L. Fuchs
+ PDF Chat A topological correspondence between partial actions of groups and inverse semigroup actions 2022 Luis Martínez
Héctor Pinedo
Carlos Uzcátegui
+ Additive relations 2022 Á. Száz
G. Száz
+ On partially ordered groups 2011 E. E. Shirshova