An explicit height bound for the classical modular polynomial

Type: Article

Publication Date: 2010-04-21

Citations: 13

DOI: https://doi.org/10.1007/s11139-010-9231-8

Locations

  • The Ramanujan Journal - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Modular arithmetic and Euler's theorem 2009 E. Desurvire
+ Introduction to Modular Arithmetic 2021 R. Fioresi
Marta Morigi
+ Introduction to Modular Arithmetic 2016
+ Introduction to Modular Arithmetic 2018
+ On the Modular Function and Its Importance for Arithmetic 2007 Paula B. Cohen
+ Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis 2021 Anne-Maria Ernvall-Hytönen
Neea Palojärvi
+ A radically simplified Selberg zeta function for the modular group 1999 John B. Lewis
+ Introduction to modern prime number theory 1952 H.L. Platzer
+ Modular Arithmetic 2009 Norman R. Reilly
+ Modular multiplication 1996 R. P. Burn
+ 3. Modular arithmetic 2017 Benjamin Fine
Anthony Gaglione
Anja Moldenhauer
Gerhard Rosenberger
Dennis Spellman
+ PDF Chat A polynomial analog of the Goldbach conjecture 1963 David R. Hayes
+ Explicit bounds for primes in arithmetic progressions 2018 Michael A. Bennett
Greg Martin
Kevin O’Bryant
Andrew Rechnitzer
+ PDF Chat Lower bounds for the height in Galois extensions 2016 Francesco Amoroso
David Masser
+ An upper bound on the least prime for certain modular congruences 2024 Rishabh Agnihotri
+ Explicit lower bounds for the height in Galois extensions of number fields 2024 Jonathan Jenvrin
+ An Introduction to Prime Number Sieves 1990 Jonathan Sorenson
+ PDF Chat An effective lower bound for the height of algebraic numbers 1996 Paul Voutier
+ Chapter 4. Modular Arithmetic 2008
+ New estimate for a Kloosterman sum with primes for a composite modulus 2018 Maxim Aleksandrovich Korolev