On Erdős and Sárközy’s sequences with Property P

Type: Article

Publication Date: 2016-10-18

Citations: 1

DOI: https://doi.org/10.1007/s00605-016-0995-9

Abstract

A sequence $A$ of positive integers having the property that no element $a_i \in A$ divides the sum $a_j+a_k$ of two larger elements is said to have `Property P'. We construct an infinite set $S\subset \mathbb{N}$ having Property P with counting function $S(x)\gg\frac{\sqrt{x}}{\sqrt{\log x}(\log\log x)^2(\log \log \log x)^2}$. This improves on an example given by Erd\H{o}s and S\'ark\"ozy with a lower bound on the counting function of order $\frac{\sqrt{x}}{\log x}$.

Locations

  • Monatshefte für Mathematik - View - PDF
  • arXiv (Cornell University) - View - PDF
  • TUGraz OPEN Library (Graz University of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On Erdős and Sárközy's sequences with Property P 2016 Christian Elsholtz
Stefan Planitzer
+ On Erdös property P1 for the arithmetical sequence 1982 Rolf Sattler
+ On a problem of Erdős and Sárközy about sequences with no term dividing the sum of two larger terms 2023 Benjamin Bedert
+ On a Problem of Erdős and Sárközy 2001 Tomasz Schoen
+ On a problem of Erdős, Nathanson and Sárközy 2019 Yong-Gao Chen
Ya-Li Li
+ On Erdös property P1 for the sequence of squarefree numbers 1982 Rolf Sattler
+ On a problem of P. Erdös 1976 Endre Szemerédi
+ The counting version of a problem of Erdős 2020 Péter Pál Pach
Richárd Palincza
+ The counting version of a problem of Erdős 2020 Péter Pál Pach
Richárd Palincza
+ PDF Chat On some properties of Erdös sets 1984 Marek Kuczma
+ Results and conjectures related to a conjecture of Erdős concerning primitive sequences 2017 Bakir Farhi
+ PDF Chat A note on a result of Erdös, Sárkőzy and Sós 1987 R. Balasubramanian
+ On a problem of Erdős and Graham 1997 Béla Bollobás
Norbert Hegyvári
Guoping Jin
+ On a Problem of Erdos Concerning Primitive Sequences 1993 Zhenxiang Zhang
+ Disapprove of a conjecture of Erdos on primitive sequences 2011 Bakir Farhi
+ On a Question of Erdös on Subsequence Sums 1996 Don Coppersmith
Steven Phillips
+ A note on the Erdős distinct subset sums problem 2020 Quentin Dubroff
Jacob Fox
Max Wenqiang Xu
+ PDF Chat The Erdős-Ko-Rado Theorem for Integer Sequences 1999 Péter Frankl
Norihide Tokushige
+ An extension of a result of Erdös and Zaremba 2018 Michel Weber
+ PDF Chat On a density problem of Erdös 1999 Safwan Akbik

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Divisibility problems for function fields 2018 Stephan Baier
Arpit Bansal
Rajneesh Kumar Singh