Type: Article
Publication Date: 2018-12-31
Citations: 5
DOI: https://doi.org/10.2140/ant.2018.12.2237
The purpose of this paper is to collect and make explicit the results of Gel'fand, Graev and Piatetski-Shapiro and Miyazaki for the $GL(3)$ cusp forms which are non-trivial on $SO(3,\mathbb{R})$. We give new descriptions of the spaces of cusp forms of minimal $K$-type and from the Fourier-Whittaker expansions of such forms give a complete and completely explicit spectral expansion for $L^2(SL(3,\mathbb{Z})\backslash PSL(3,\mathbb{R}))$, accounting for multiplicities, in the style of Duke, Friedlander and Iwaniec's paper on Artin $L$-functions. We directly compute the Jacquet integral for the Whittaker functions at the minimal $K$-type, improving Miyazaki's computation. The primary tool will be the study of the differential operators coming from the Lie algebra on vector-valued cusp forms.