The survival of large dimensional threshold contact processes

Type: Article

Publication Date: 2009-07-01

Citations: 8

DOI: https://doi.org/10.1214/08-aop440

Abstract

We study the threshold θ contact process on ℤd with infection parameter λ. We show that the critical point λc, defined as the threshold for survival starting from every site occupied, vanishes as d→∞. This implies that the threshold θ voter model on ℤd has a nondegenerate extremal invariant measure, when d is large.

Locations

  • The Annals of Probability - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Threshold θ ≥ 2 contact processes on homogeneous trees 2007 Luiz Renato Fontes
Roberto H. Schonmann
+ The contact process on finite homogeneous trees revisited 2014 M. Cranston
Thomas Mountford
Jean-Christophe Mourrat
Daniel Valesin
+ The contact process on finite homogeneous trees revisited 2014 M. Cranston
Thomas Mountford
Jean-Christophe Mourrat
Daniel Valesin
+ A discontinuous phase transition in the threshold-$θ\geq 2$ contact process on random graphs 2019 Danny Nam
+ Percolation on the stationary distributions of the voter model 2015 Balázs Ráth
Daniel Valesin
+ Percolation on the stationary distributions of the voter model 2015 Balázs Ráth
Daniel Valesin
+ Percolation on the stationary distributions of the voter model 2017 Balázs Ráth
Daniel Valesin
+ The contact process on dynamic regular graphs: monotonicity and subcritical phase 2023 Bruno Schapira
Daniel Valesin
+ Threshold $theta geq 2$ contact processes on homogeneous trees 2006 Luiz Renato Fontes
Roberto H. Schonmann
+ PDF Chat On the threshold of spread-out contact process percolation 2022 Balázs Ráth
Daniel Valesin
+ Critical Density Points for Threshold Voter Models on Homogeneous Trees 2011 Xiaofeng Xue
+ On the threshold of spread-out voter model percolation 2017 Balázs Ráth
Daniel Valesin
+ On the threshold of spread-out voter model percolation 2017 Balázs Ráth
Daniel Valesin
+ On the threshold of spread-out voter model percolation 2017 Balázs Ráth
Daniel Valesin
+ The contact process with dynamic edges on $\mathbb {Z}$ 2020 Amitai Linker
Daniel Remenik
+ The contact process on finite homogeneous trees revisited 2014 Daniel Valesin
Thomas Mountford
Jean-Christophe Mourrat
M. Cranston
+ PDF Chat METASTABILITY OF THE CONTACT PROCESS ON SLOWLY EVOLVING SCALE-FREE NETWORKS 2024 Emmanuel Jacob
Amitai Linker
Peter Mörters
+ Scaling limit of an adaptive contact process 2022 Adrián González Casanova
András Tóbiás
Daniel Valesin
+ Phase transition for a non-attractive infection process in heterogeneous environment 2017 Marinus Gottschau
Markus Heydenreich
Kilian Matzke
Cristina Toninelli
+ PDF Chat Scaling limit of an adaptive contact process 2024 Adrián González Casanova
András Tóbiás
Daniel Valesin

Works That Cite This (9)

Action Title Year Authors
+ PDF Chat Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule 2018 Da-Jiang Liu
Chi‐Jen Wang
James W. Evans
+ PDF Chat On some threshold-one attractive interacting particle systems on homogeneous trees 2020 Ying Mu
Yang Zhang
+ Asymptotic Behavior of Critical Infection Rates for Threshold-one Contact Processes on Lattices and Regular Trees 2013 Xiaofeng Xue
+ A first order phase transition in the threshold <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>θ</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> contact process on random <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>r</mml:mi></mml:math>-regular graphs and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" display="inline" … 2012 Shirshendu Chatterjee
Rick Durrett
+ PDF Chat Asymptotic Behavior of Critical Infection Rates for Threshold-One Contact Processes on Lattices and Regular Trees 2014 Xiaofeng Xue
+ PDF Chat Convergence Rates for Subcritical Threshold-One Contact Processes on Lattices 2015 Xiaofeng Xue
+ On the complete convergence of some threshold-one attractive interacting particle systems on homogeneous trees 2018 Yingxin Mu
Yuan Zhang
+ On some threshold-one attractive interacting particle systems on homogeneous trees 2018 Yingxin Mu
Yuan Zhang
+ A discontinuous phase transition in the threshold-$\theta \geq 2$ contact process on random graphs 2019 Danny Nam