Lower bounds for Maass forms on semisimple groups

Type: Article

Publication Date: 2020-04-17

Citations: 15

DOI: https://doi.org/10.1112/s0010437x20007125

Abstract

Let $G$ be an anisotropic semisimple group over a totally real number field $F$ . Suppose that $G$ is compact at all but one infinite place $v_{0}$ . In addition, suppose that $G_{v_{0}}$ is $\mathbb{R}$ -almost simple, not split, and has a Cartan involution defined over $F$ . If $Y$ is a congruence arithmetic manifold of non-positive curvature associated with $G$ , we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View
  • Compositio Mathematica - View

Similar Works

Action Title Year Authors
+ Infinite volume and atoms at the bottom of the spectrum 2023 S. F. Edwards
Mikołaj Frączyk
Minju Lee
Hee Oh
+ Infinite volume and atoms at the bottom of the spectrum 2024 S. F. Edwards
Mikołaj Frączyk
Minju Lee
Hee Oh
+ Sharp estimates for Lebesgue constants on compact Lie groups 1986 Saverio Giulini
Giancarlo Travaglini
+ Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups 2017 Pablo Ramacher
Satoshi Wakatsuki
+ PDF Chat Hybrid bounds for automorphic forms on ellipsoids over number fields 2012 Valentin Blomer
Philippe Michel
+ Upper bounds for Maass forms on semisimple groups 2014 Simon Marshall
+ Sup norms of Maass forms on semisimple groups 2014 Simon Marshall
+ PDF Chat The sup-norm problem on the Siegel modular space of rank two 2016 Valentin Blomer
Anke Pohl
+ PDF Chat DIAMETER AND LAPLACE EIGENVALUE ESTIMATES FOR COMPACT HOMOGENEOUS RIEMANNIAN MANIFOLDS 2022 Emilio A. Lauret
+ Uniform subconvex bounds for Rankin-Selberg $L$-functions 2021 Qingfeng Sun
+ PDF Chat An Upper Bound for the Poisson Kernel on Higher Rank NA Groups 2011 Richard Penney
Roman Urban
+ PDF Chat On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups 2020 Emilio A. Lauret
+ Estimates for the Fourier coefficients of Maass forms 2002 Henryk Iwaniec
+ Schauder estimates on Lie groups 1990 Robert J. Burns
Derek W. Robinson
+ Character Estimates of Adjoint Simple Lie Groups 2013 Corey Manack
+ Character Estimates of Adjoint Simple Lie Groups 2013 Corey Manack
+ Diameter and Laplace eigenvalue estimates for compact homogeneous Riemannian manifolds 2020 Emilio A. Lauret
+ The sup-norm problem for the Siegel modular space of rank two 2014 Valentin Blomer
Anke Pohl
+ The sup-norm problem for the Siegel modular space of rank two 2014 Valentin Blomer
Anke Pohl
+ PDF Chat Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms 2007 André Reznikov