New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries

Type: Article

Publication Date: 2008-07-31

Citations: 12

DOI: https://doi.org/10.1112/plms/pdn030

Abstract

Let k ⩾ 3 be an integer, and let G be a finite abelian group with |G| = N, where (N, (k − 1)!) = 1. We write rk(G) for the largest cardinality |A| of a set A ⊆ G which does not contain k distinct elements in arithmetic progression. The famous theorem of Szemerédi essentially asserts that rk(ℤ/Nℤ) = ok(N). It is known, in fact, that the estimate rk(G) = ok(N) holds for all G. There have been many papers concerning the issue of finding quantitative bounds for rk(G). A result of Bourgain states thatr3(G) ≪ N(log log N/log N)1/2 for all G. In this paper we obtain a similar bound for r4(G) in the particular case G = Fn, where F is a fixed finite field with char (F) ≠ 2, 3 (for example, F = 𝔽5). We prove that r4(G) ≪ F N(log N)−c for some absolute constant c > 0. In future papers we will treat the general abelian groups G, eventually obtaining a comparable result for an arbitrary G.

Locations

  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • DataCite API - View
  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ New bounds for Szemeredi's theorem, Ia: Progressions of length 4 in finite field geometries revisited 2012 Ben Green
Terence Tao
+ On a two-dimensional analog of Szemeredi's Theorem in Abelian groups 2007 Ilya D. Shkredov
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ PDF Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ Arithmetic progressions in multiplicative groups of finite fields 2016 Mei-Chu Chang
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ On very restricted arithmetic progressions in symmetric sets in finite field model 2018 Jan Hązła
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Improved bounds for progression-free sets in $$C_8^{n}$$ 2020 Fedor Petrov
Cosmin Pohoata
+ PDF NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ PDF Sets without <i>k</i>‐term progressions can have many shorter progressions 2020 Jacob Fox
Cosmin Pohoata
+ Mixing for progressions in non-abelian groups 2012 Terence Tao
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ Erd&amp;#337;s-Ginzburg-Ziv Constants by Avoiding Three-Term Arithmetic Progressions 2018 Jacob Fox
Lisa Sauermann

Works That Cite This (18)

Action Title Year Authors
+ PDF Анализ Фурье в комбинаторной теории чисел 2010 Илья Дмитриевич Шкредов
Ilya D. Shkredov
+ PDF Chat An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications 2010 Ben Green
Terence Tao
+ PDF NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ PDF Chat Linear forms and quadratic uniformity for functions on ℤ N 2011 W. T. Gowers
Jason B. Wolf
+ On subsets of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:math> containing no <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math>-term progressions 2010 Yuqian Lin
Jason B. Wolf
+ PDF Chat The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic 2011 Terence Tao
Tamar Ziegler
+ PDF Chat Graph norms and Sidorenko’s conjecture 2010 Hamed Hatami
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ PDF Chat Embedding Graphs into Larger Graphs: Results, Methods, and Problems 2019 Miklós Simonovits
Endre Szemerédi
+ PDF The inverse conjecture for the Gowers norm over finite fields via the correspondence principle 2010 Terence Tao
Tamar Ziegler