A survey for trust-aware recommender systems: A deep learning perspective

Type: Article

Publication Date: 2022-05-08

Citations: 54

DOI: https://doi.org/10.1016/j.knosys.2022.108954

Locations

  • Knowledge-Based Systems - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Survey for Trust-aware Recommender Systems: A Deep Learning Perspective 2020 Manqing Dong
Yuan Feng
Lina Yao
Xianzhi Wang
Xiwei Xu
Liming Zhu
+ Trust in Recommender Systems: A Deep Learning Perspective. 2020 Manqing Dong
Feng Yuan
Lina Yao
Xianzhi Wang
Xiwei Xu
Liming Zhu
+ Trust-aware Top-N Recommender Systems with Correlative Denoising Autoencoder. 2017 Yiteng Pan
Fazhi He
Haiping Yu
+ TrustTF: A tensor factorization model using user trust and implicit feedback for context-aware recommender systems 2020 Jianli Zhao
Wei Wang
Zipei Zhang
Qiuxia Sun
Huan Huo
Lijun Qu
Shidong Zheng
+ PDF Chat Deep Learning Based Recommender System: A Survey and New Perspectives 2019 Shuai Zhang
Lina Yao
Aixin Sun
Yi Tay
+ PDF Chat The use of machine learning algorithms in recommender systems: A systematic review 2017 Ivens Portugal
Paulo Alencar
Don A. Cowan
+ PDF Chat A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice 2024 Shaina Raza
Mizanur Rahman
Safiullah Kamawal
Armin Toroghi
Ananya Raval
Farshad Navah
Amirmohammad Kazemeini
+ Recent Developments in Recommender Systems: A Survey 2023 Yang Li
Kangbo Liu
Ranjan Satapathy
Suhang Wang
Erik Cambria
+ PDF Chat A Survey of Latent Factor Models in Recommender Systems 2024 Hind I. Alshbanat
Hafida Benhidour
Said Kerrache
+ PDF Chat Deep Learning based Recommender System: A Survey and New Perspectives. 2017 Shuai Zhang
Lina Yao
Aixin Sun
+ CTITF: A tensor factorization model with constrained bidirectional user trust and implicit feedback for context-aware recommender systems 2024 Hao Li
Jianjian Chen
Jianli Zhao
Lutong Yao
Rumeng Zhang
Lu Yang
Xiaoping Lu
+ PDF Chat User preference and embedding learning with implicit feedback for recommender systems 2021 Sumit Sidana
Mikhail Trofimov
Oleh Horodnytskyi
Charlotte Laclau
Yury Maximov
Massih-Reza Amini
+ PDF Chat Tag-Aware Recommender Systems: A State-of-the-Art Survey 2011 Zi-Ke Zhang
Tao Zhou
Yicheng Zhang
+ PDF Chat Deep Learning Based Recommender System 2019 Shuai Zhang
Lina Yao
Aixin Sun
Yi Tay
+ Leveraging Deep Learning Techniques on Collaborative Filtering Recommender Systems 2023 Ali Fallahi RahmatAbadi
Javad Mohammadzadeh
+ A Survey of Deep Reinforcement Learning in Recommender Systems: A Systematic Review and Future Directions 2021 Xiaocong Chen
Lina Yao
Julian McAuley
Guanglin Zhou
Xianzhi Wang
+ PDF Chat A Deep Hybrid Model for Recommendation Systems 2019 Muhammet Çakır
Şule Gündüz Öğüdücü
Resul Tugay
+ PDF Chat Predictive accuracy of recommender algorithms 2024 William Noffsinger
+ What Are We Optimizing For? A Human-centric Evaluation Of Deep Learning-based Recommender Systems 2024 Ruixuan Sun
Avinash Akella
Xinyi Wu
Ruoyan Kong
Joseph A. Konstan
+ A Systematic Review on Context-Aware Recommender Systems using Deep Learning and Embeddings 2020 Igor André Pegoraro Santana
Marcos Aurélio Domingues