Random Assignment Problems on 2d Manifolds

Type: Article

Publication Date: 2021-05-01

Citations: 5

DOI: https://doi.org/10.1007/s10955-021-02768-4

Abstract

Abstract We consider the assignment problem between two sets of N random points on a smooth, two-dimensional manifold $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ω</mml:mi></mml:math> of unit area. It is known that the average cost scales as $$E_{\Omega }(N)\sim {1}/{2\pi }\ln N$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi>Ω</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>∼</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow><mml:mo>ln</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math> with a correction that is at most of order $$\sqrt{\ln N\ln \ln N}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msqrt><mml:mrow><mml:mo>ln</mml:mo><mml:mi>N</mml:mi><mml:mo>ln</mml:mo><mml:mo>ln</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:msqrt></mml:math> . In this paper, we show that, within the linearization approximation of the field-theoretical formulation of the problem, the first $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ω</mml:mi></mml:math> -dependent correction is on the constant term, and can be exactly computed from the spectrum of the Laplace–Beltrami operator on $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ω</mml:mi></mml:math> . We perform the explicit calculation of this constant for various families of surfaces, and compare our predictions with extensive numerics.

Locations

  • Journal of Statistical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Research Portal (King's College London) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • IRIS Research product catalog (Sapienza University of Rome) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On random multi-dimensional assignment problems 2019 Alan Frieze
Wesley Pegden
Tomasz Tkocz
+ On random multi-dimensional assignment problems 2019 Alan Frieze
Wesley Pegden
Tomasz Tkocz
+ PDF Chat On random multi-dimensional assignment problems 2020 Alan Frieze
Wesley Pegden
Tomasz Tkocz
+ PDF Chat Finer estimates on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn></mml:math>-dimensional matching problem 2019 Luigi Ambrosio
Federico Glaudo
+ PDF Chat The Number of Optimal Matchings for Euclidean Assignment on the Line 2021 Sergio Caracciolo
Vittorio Erba
Andrea Sportiello
+ Efficient algorithms for three-dimensional axial and planar random assignment problems 2010 Alan Frieze
Gregory B. Sorkin
+ PDF Chat Euclidean Random Matching in 2D for Non-constant Densities 2020 Dario Benedetto
Emanuele Caglioti
+ PDF Chat Topology optimization on two-dimensional manifolds 2020 Yongbo Deng
Zhenyu Liu
Jan G. Korvink
+ PDF Chat Testing the manifold hypothesis 2015 Charles Fefferman
Sanjoy K. Mitter
Hariharan Narayanan
+ PDF Chat Random Matching in 2D with Exponent 2 for Gaussian Densities 2024 Emanuele Caglioti
Francesca Pieroni
+ Testing the Manifold Hypothesis 2013 Charles Fefferman
Sanjoy K. Mitter
Hariharan Narayanan
+ Testing the Manifold Hypothesis 2013 Charles Fefferman
Sanjoy K. Mitter
Hariharan Narayanan
+ D-1 Problems in density estimation on Grassmann manifolds(多変量解析(3))(日本統計学会第69回大会記録) 2001 靖子 筑瀬
+ Statistical Mechanics and Geometry of Random Manifolds 1993 Leo Radzihovsky
+ Computational Geometry on Statistical Manifolds for Clustering : Extended Abstract (Models of Computation and Algorithms) 1999 真理 稲葉
浩 今井
邦彦 定兼
+ Computational Geometry on Statistical Manifolds for Clustering : Extended Abstract (Models of Computation and Algorithms) 1999 Mary Inaba
Hiroshi Imai
Kunihiko Sadakane
+ A Problem on Random Points in a Triangle 1967 Ulrich Krengel
+ A Problem on Random Points in a Triangle 1967 Ulrich Krengel
+ PDF Chat Random fields on Riemannian manifolds: A constructive approach 1986 Gian Fabrizio De Angelis
Diego de Falco
Glauco Di Genova
+ PDF Chat The Dyck bound in the concave 1-dimensional random assignment model 2020 Sergio Caracciolo
Matteo D’Achille
Vittorio Erba
Andrea Sportiello