Knots and Non-Hermitian Bloch Bands

Type: Article

Publication Date: 2021-01-07

Citations: 125

DOI: https://doi.org/10.1103/physrevlett.126.010401

Abstract

Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A ${\mathbb{Z}}_{2}$ knot invariant, the global biorthogonal Berry phase $Q$ as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature, for example, the Hopf link, the trefoil knot, the figure-8 knot, and the Whitehead link.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Topological Knots in Quantum Spin Systems 2021 X. M. Yang
L. Jin
Z. Song
+ PDF Chat Machine learning of knot topology in non-Hermitian band braids 2024 Jiangzhi Chen
Zi Wang
Yu-Tao Tan
Ce Wang
Jie Ren
+ Machine Learning of Knot Topology in Non-Hermitian Band Braids 2024 Jiangzhi Chen
Zi Wang
Yu-Tao Tan
Ce Wang
Jie Ren
+ Knot Topology in Quantum Spin System 2019 X. M. Yang
L. Jin
Song Zhi
+ Tidal surface states as fingerprints of non-Hermitian nodal knot metals 2018 Xiao Zhang
Guangjie Li
Yuhan Liu
Tommy Tai
Ronny Thomale
Ching Hua Lee
+ PDF Chat Topological energy braiding of non-Bloch bands 2022 Yang Li
Ji Xiang
Yuanping Chen
Xiaohong Yan
Xiaosen Yang
+ Topological energy braiding of the non-Bloch bands 2022 Yang Li
Yuanping Chen
Xiaosen Yang
+ Hermitian Topologies originating from non-Hermitian braidings 2022 W. B. Rui
Y. X. Zhao
Z. D. Wang
+ PDF Chat Hermitian topologies originating from non-Hermitian braidings 2023 W. B. Rui
Y. X. Zhao
Z. D. Wang
+ PDF Chat Eigenvalue topology of non-Hermitian band structures in two and three dimensions 2022 Charles C. Wojcik
Kai Wang
Avik Dutt
Janet Zhong
Shanhui Fan
+ PDF Chat What's knot to like? Observation of a linked loop quantum state 2021 Ilya Belopolski
Guoqing Chang
Tyler A. Cochran
Zi‐Jia Cheng
Xiàn Yáng
Cole Hugelmeyer
Kaustuv Manna
Jia‐Xin Yin
Guangming Cheng
Daniel Multer
+ PDF Chat Hyperbolic nodal band structures and knot invariants 2019 Marcus Stålhammar
Lukas Rødland
Gregory Arone
Jan Carl Budich
Emil J. Bergholtz
+ Quantum mechanics, knot theory, and quantum doubles 1996 A. E. F. Djemai
+ PDF Chat Topological phase transitions driven by non-Hermiticity in quantum spin Hall insulators 2021 Junpeng Hou
Ya-Jie Wu
Chuanwei Zhang
+ PDF Chat The studies of topological phases and energy braiding of non-Hermitian models using machine learning 2024 S. S. Shi
S. N. G. Chu
Yuee Xie
Yuanping Chen
+ Homotopy, Symmetry, and Non-Hermitian Band Topology 2023 Kang Yang
Zhi Li
J. Lukas K. König
Lukas Rødland
Marcus Stålhammar
Emil J. Bergholtz
+ PDF Chat Symmetry and topological classification of Floquet non-Hermitian systems 2022 Chunhui Liu
Haiping Hu
Shu Chen
+ PDF Chat Exceptional Points and Braiding Topology in Non-Hermitian Systems with long-range coupling 2024 S. M. Rafi-Ul-Islam
Zhuo Bin Siu
Md. Saddam Hossain Razo
M. B. A. Jalil
+ PDF Chat Knotted non-Hermitian metals 2019 Johan Carlström
Marcus Stålhammar
Jan Carl Budich
Emil J. Bergholtz
+ PDF Chat Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals 2020 Zhesen Yang
Ching‐Kai Chiu
Chen Fang
Jiangping Hu

Works Cited by This (95)

Action Title Year Authors
+ PDF Chat Experimental reconstruction of the Berry curvature in a Floquet Bloch band 2016 Nick Fläschner
Benno S. Rem
Matthias Tarnowski
Dominik Vogel
Dirk-Sören Lühmann
K. Sengstock
Christof Weitenberg
+ PDF Chat A polynomial invariant for knots via von Neumann algebras 1985 Vaughan F. R. Jones
+ PDF Chat Constructing a polynomial whose nodal set is any prescribed knot or link 2018 Benjamin Bode
Mark R. Dennis
+ PDF Chat Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon's knot, trefoil knot, and other linked nodal varieties 2017 Motohiko Ezawa
+ PDF Chat Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems 2018 Flore K. Kunst
Elisabet Edvardsson
Jan Carl Budich
Emil J. Bergholtz
+ PDF Chat Topological Invariants for Quantum Quench Dynamics from Unitary Evolution 2020 Haiping Hu
Erhai Zhao
+ PDF Chat Imaging nodal knots in momentum space through topolectrical circuits 2020 Ching Hua Lee
Amanda Sutrisno
Tobias Hofmann
Tobias Helbig
Yuhan Liu
Yee Sin Ang
L. K. Ang
Xiao Zhang
Martin Greiter
Ronny Thomale
+ Braid Groups 2008 Christian Kassel
Vladimir Turaev
+ PDF Chat Topological insulators and superconductors: tenfold way and dimensional hierarchy 2010 Shinsei Ryu
Andreas P. Schnyder
Akira Furusaki
Andreas W. W. Ludwig
+ PDF Chat Observation of a Topological Transition in the Bulk of a Non-Hermitian System 2015 Julia M. Zeuner
Mikael C. Rechtsman
Yonatan Plotnik
Yaakov Lumer
Stefan Nolte
Mark S. Rudner
Mordechai Segev
Alexander Szameit