Multiplicative series, modular forms, and Mandelbrot polynomials

Type: Article

Publication Date: 2020-06-24

Citations: 2

DOI: https://doi.org/10.1090/mcom/3564

Abstract

We say a power series <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts a Subscript n Baseline q Superscript n"> <mml:semantics> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum _{n=0}^\infty a_n q^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <italic>multiplicative</italic> if the sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 comma a 2 slash a 1 comma ellipsis comma a Subscript n Baseline slash a 1 comma ellipsis"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">1,a_2/a_1,\ldots ,a_n/a_1,\ldots</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is so. In this paper, we consider multiplicative power series <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f squared"> <mml:semantics> <mml:msup> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">f^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also multiplicative. We find a number of examples for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a rational function or a theta series and prove that the complete set of solutions is the locus of a (probably reducible) affine variety over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The precise determination of this variety turns out to be a finite computational problem, but it seems to be beyond the reach of current computer algebra systems. The proof of the theorem depends on a bound on the logarithmic capacity of the Mandelbrot set.

Locations

  • Mathematics of Computation - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Multiplicative 𝜂-quotients 1996 Yves Martin
+ PDF Chat Modular forms which behave like theta series 1997 Kalyan Chakraborty
A. K. Lal
B. Ramakrishnan
+ Multiplicative Series, Modular Forms, and Mandelbrot Polynomials 2019 Michael Larsen
+ Multiplicative Series, Modular Forms, and Mandelbrot Polynomials. 2019 Michael Larsen
+ Modular Forms, Multiplicative Functions, and Mandelbrot Polynomials 2019 Michael Larsen
+ Divided powers and multiplicative polynomial laws 1986 Dieter Ziplies
+ Polynomial byte representation and modular multiplication 2009 E. Desurvire
+ PDF Chat Fractional Power Series and Pairings on Drinfeld Modules 1996 Bjorn Poonen
+ Modular multiplication 1996 R. P. Burn
+ Power series with multiplicative coefficients 1981 Lutz Lucht
+ Multiplicative Functions 2003 Svetoslav Savchev
Titu Andreescu
+ Modular forms with multiplicative coefficients 1990 Tom M. Apostol
+ Composition multiplicative integral of a formal power series 1981 Yu. L. Daletskiǐ
+ Modular Forms Whose Coefficients Possess Multiplicative Properties 1959 Morris Newman
+ PDF Chat Polynomials with no small prime values 1986 Kevin S. McCurley
+ Modular forms with multiplicative coefficients 1976 Tom M. Apostol
+ Modular Functions 1987 Dale Husemöller
+ PDF Chat On generating functions of classical polynomials 1974 Arun Verma
+ PDF Chat Gauss sums and Fourier analysis on multiplicative subgroups of 𝑍_{𝑞} 1983 Harold G. Diamond
Frank Gerth
Jeffrey D. Vaaler
+ Sums of multiplicative functions 2008 Emmanuel Kowalski