On $L^{2}$-boundedness of Fourier integral operators

Type: Article

Publication Date: 2020-06-18

Citations: 3

DOI: https://doi.org/10.1186/s13660-020-02439-0

Abstract

Abstract Let $T_{a,\varphi }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>φ</mml:mi></mml:mrow></mml:msub></mml:math> be a Fourier integral operator with symbol a and phase φ . In this paper, under the conditions $a(x,\xi )\in L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>a</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>ξ</mml:mi><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mi>∞</mml:mi></mml:msup><mml:msubsup><mml:mi>S</mml:mi><mml:mi>ρ</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>(</mml:mo><mml:mi>ρ</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>(</mml:mo><mml:mi>ω</mml:mi><mml:mo>)</mml:mo></mml:math> and $\varphi \in L^{\infty }\varPhi ^{2}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>φ</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mi>∞</mml:mi></mml:msup><mml:msup><mml:mi>Φ</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> , the authors show that $T_{a,\varphi }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>φ</mml:mi></mml:mrow></mml:msub></mml:math> is bounded from $L^{2}(\mathbb{R}^{n})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>(</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mo>)</mml:mo></mml:math> to $L^{2}(\mathbb{R}^{n})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>(</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mo>)</mml:mo></mml:math> .

Locations

  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Journal of Inequalities and Applications - View - PDF

Similar Works

Action Title Year Authors
+ On the unboundedness of a class of Fourier integral operators on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math> 2013 Abderrahmane Senoussaoui
+ PDF Chat On the $L^2 $ boundedness of Fourier integral operators in $\mathbf{R}^n$ 1981 Kenji Asada
+ On the global <i>L</i> <sup>2</sup>-boundedness of Fourier integral operators with rough amplitude and phase functions 2023 Joachim Sindayigaya
+ L「上p上」 boundedness of Fourier integral operators 1982 Robert M. Beals
+ On 𝐿<sup>𝑝</sup> boundedness of rough Fourier integral operators 2024 Guoning Wu
Jie Yang
+ L2 Boundedness of the Fourier Integral Operator with Inhomogeneous Phase Functions 2023 Jia Wei Dai
Jie Cheng Chen
+ PDF Chat On the $L^{2}$ boundedness theorem of nonhomogeneous Fourier integral operators in ${\bf R}^{n}$ 1984 Kenji Asada
+ L2-boundedness and L2-compactness of a class of Fourier integral operators 2006 Bekkai Messirdi
Abderrahmane Senoussaoui
+ 𝐿^{𝑝} boundedness of Fourier integral operators 1982 Robert M. Beals
+ On a class of $h$-Fourier integral operators 2013 Chahrazed Harrat
Senoussaoui Abderrahmane
+ On a class of $h$-Fourier integral operators 2013 Chahrazed Harrat
Abderrahmane Senoussaoui
+ PDF Chat The Improvement on the Boundedness and Norm of a Class of Integral Operators onLpSpace 2015 Lifang Zhou
Jin Lu
+ On $$L^2$$ boundedness of rough Fourier integral operators 2023 Guoning Wu
Jie Yang
+ L∞-BMO boundedness of a class of Fourier integral operators 2025 Dai Jiawei
Geng Ji
Qiang Huang
+ PDF Chat On Fourier integral operators 1982 A. El Kohen
+ PDF Chat 𝐿²𝑙𝑜𝑐-boundedness for a class of singular Fourier integral operators 1984 A. El Kohen
+ Fourier integral operators on $$L^p({\mathbb {R}}^{n})$$ when $$2&lt;p\le \infty $$ 2023 Shoufeng Shen
Zhu Xiang-rong
+ PDF Chat An $ L^{q}\rightarrow L^{r} $ estimate for rough Fourier integral operators and its applications 2022 Jinhui Li
Guangqing Wang
+ On the L[2] boundedness theorem of non-homogeneous Fourier integral operators in R[n] = R[n]における非斉次フーリエ積分作用素のL[2]有界性定理について 1982 健嗣 淺田
+ $L^2_$\operatorname${loc}$-Boundedness for a Class of Singular Fourier Integral Operators 1984 A. El Kohen