On the variance of squarefree integers in short intervals and arithmetic progressions

Type: Article

Publication Date: 2021-02-01

Citations: 8

DOI: https://doi.org/10.1007/s00039-021-00557-5

Abstract

Abstract We evaluate asymptotically the variance of the number of squarefree integers up to x in short intervals of length $$H &lt; x^{6/11 - \varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mo>&lt;</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mrow><mml:mn>6</mml:mn><mml:mo>/</mml:mo><mml:mn>11</mml:mn><mml:mo>-</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> and the variance of the number of squarefree integers up to x in arithmetic progressions modulo q with $$q &gt; x^{5/11 + \varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>q</mml:mi><mml:mo>&gt;</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mrow><mml:mn>5</mml:mn><mml:mo>/</mml:mo><mml:mn>11</mml:mn><mml:mo>+</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> . On the assumption of respectively the Lindelöf Hypothesis and the Generalized Lindelöf Hypothesis we show that these ranges can be improved to respectively $$H &lt; x^{2/3 - \varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mo>&lt;</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo>-</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> and $$q &gt; x^{1/3 + \varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>q</mml:mi><mml:mo>&gt;</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> . Furthermore we show that obtaining a bound sharp up to factors of $$H^{\varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>H</mml:mi><mml:mi>ε</mml:mi></mml:msup></mml:math> in the full range $$H &lt; x^{1 - \varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mo>&lt;</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> is equivalent to the Riemann Hypothesis. These results improve on a result of Hall (Mathematika 29(1):7–17, 1982) for short intervals, and earlier results of Warlimont, Vaughan, Blomer, Nunes and Le Boudec in the case of arithmetic progressions.

Locations

  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View
  • Geometric and Functional Analysis - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Squarefrees are Gaussian in short intervals 2022 Ofir Gorodetsky
Alexander P. Mangerel
Brad Rodgers
+ PDF Chat On the distribution of squarefree integers in arithmetic progressions 2018 Pierre Le Boudec
+ On the distribution of squarefree integers in arithmetic progressions 2014 Pierre Le Boudec
+ The distribution of squarefree integers in small intervals 1954 Richard Bellman
Harold N. Shapiro
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ Multiplicative properties of integers in short intervals 1980 Jan Turk
+ Multiplicative properties of integers in short intervals 2015 Asim Islam
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ PDF Chat Squarefrees are Gaussian in short intervals 2021 Ofir Gorodetsky
Alexander P. Mangerel
Brad Rodgers
+ Variance of Squarefull Numbers in Short Intervals 2022 Tsz Ho Chan
+ ON THE DISTRIBUTION OF r-TUPLES OF SQUAREFREE NUMBERS IN SHORT INTERVALS 2006 D. I. Tolev
+ Squarefree numbers in arithmetic progressions 2015 Ramon M. Nunes
+ PDF Chat Variance of squarefull numbers in short intervals 2023 Tsz Ho Chan
+ Sums of two squares in short intervals 2019 James E. Maynard
+ PDF Chat Primes in Short Segments of Arithmetic Progressions 1998 D. A. Goldston
C. Y. Yıldırım
+ A heuristic study of the distribution of primes in short and not-so-short intervals 2018 Miguel-Angel Sanchis-Lozano
+ On the distribution of r-tuples of squarefree numbers in short intervals 2005 D. I. Tolev
+ On two conjectures concerning squarefree numbers in arithmetic progressions 2015 Ramon M. Nunes
+ On the distribution of square-full integers 2021 Dan Wang