A Single Set Improvement to the $3k-4$ Theorem

Type: Preprint

Publication Date: 2019-11-28

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ A Single Set Improvement to the $3k-4$ Theorem 2019 David J. Grynkiewicz
+ A single set improvement to the 3k − 4 theorem 2020 David J. Grynkiewicz
+ A strengthening of Freiman's 3k-4 theorem 2022 Béla Bollobás
Imre Leader
Marius Tiba
+ PDF Chat A strengthening of Freiman's 3k−4$3k-4$ theorem 2023 Béla Bollobás
Imre Leader
Marius Tiba
+ The sum-product problem for small sets 2023 Ginny Ray Clevenger
Haley Havard
Patch Heard
Andrew Lott
Alex Rice
Brittany Wilson
+ PDF Chat The $3k-4$ Theorem modulo a Prime: High Density for $A+B$ 2024 David J. Grynkiewicz
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ PDF Chat One step further of an inverse theorem for the restricted set addition in $\mathbb{Z}/p\mathbb{Z}$ 2024 David Fernando Daza Urbano
René González‐Martínez
Mario Huicochea Mason
Amanda Montejano Cantoral
+ Long Arithmetic Progressions in Sets with Small Sumset 2009 Itziar Bardají
David J. Grynkiewicz
+ A step beyond Freiman's theorem for set addition modulo a prime 2018 Pablo Candela
Oriol Serra
Christoph Spiegel
+ The Kelley--Meka bounds for sets free of three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ A step beyond Freiman's theorem for set addition modulo a prime. 2018 Pablo Candela
Oriol Serra
Christoph Spiegel
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ Freiman's $(3k-4)$-like results for subset and subsequence sums 2024 Mohan
Jagannath Bhanja
Ram Krishna Pandey
+ An extension of Furstenberg's theorem of the infinitude of primes 2020 Frank Vega
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ Three-term arithmetic progressions in subsets of $\mathbb{F}_q^{\infty}$ of large Fourier dimension 2020 Robert Fraser
+ Three-term arithmetic progressions in subsets of $\mathbb{F}_q^{\infty}$ of large Fourier dimension 2020 Robert Fraser
+ Towards $3n-4$ in groups of prime order 2023 Vsevolod F. Lev
Oriol Serra
+ Improved bound in Roth's theorem on arithmetic progressions 2020 Tomasz Schoen

Works That Cite This (0)

Action Title Year Authors