ROBEL: Robotics Benchmarks for Learning with Low-Cost Robots

Type: Preprint

Publication Date: 2019-09-25

Citations: 9

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ ROBEL: Robotics Benchmarks for Learning with Low-Cost Robots 2019 Michael J. Ahn
Henry Zhu
Kristian Hartikainen
Hugo Ponte
Abhishek Gupta
Sergey Levine
Vikash Kumar
+ Setting up a Reinforcement Learning Task with a Real-World Robot 2018 A. Rupam Mahmood
Dmytro Korenkevych
Brent Komer
James Bergstra
+ Setting up a Reinforcement Learning Task with a Real-World Robot 2018 A. Rupam Mahmood
Dmytro Korenkevych
Brent Komer
James Bergstra
+ Benchmarking Reinforcement Learning Algorithms on Real-World Robots 2018 A. Rupam Mahmood
Dmytro Korenkevych
Gautham Vasan
William Ma
James Bergstra
+ PDF Chat BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO 2024 Sebastian Dittert
Vincent Moens
Gianni De Fabritiis
+ Benchmarking Offline Reinforcement Learning on Real-Robot Hardware 2023 Nico Gürtler
Sebastian Blaes
Pavel Kolev
Felix Widmaier
Manuel Wüthrich
Sebastian Bauer
Bernhard Schölkopf
Georg Martius
+ RoboHive: A Unified Framework for Robot Learning 2023 Vikas Kumar
Rutav Shah
Gaoyue Zhou
Vincent Moens
Vittorio Caggiano
Jay Vakil
Abhishek Gupta
Aravind Rajeswaran
+ Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline Data in the Real World 2023 Nico Gürtler
Felix Widmaier
Cansu Sancaktar
Sebastian Blaes
Pavel Kolev
Sebastian Bauer
Manuel Wüthrich
Markus Wulfmeier
Martin Riedmiller
Arthur Allshire
+ RealAnt: An Open-Source Low-Cost Quadruped for Education and Research in Real-World Reinforcement Learning 2020 Rinu Boney
Jussi Sainio
Mikko Kaivola
Arno Solin
Juho Kannala
+ BridgeData V2: A Dataset for Robot Learning at Scale 2023 Homer Walke
Kevin Black
Abraham P. Lee
Moo Jin Kim
Max Du
Chongyi Zheng
Tony Z. Zhao
Philippe Hansen-Estruch
Quan Vuong
Andre He
+ RealAnt: An Open-Source Low-Cost Quadruped for Research in Real-World Reinforcement Learning. 2020 Rinu Boney
Jussi Sainio
Mikko Kaivola
A. A. Solin
Juho Kannala
+ PDF Chat Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention 2021 Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+ Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention 2021 Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+ Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention 2021 Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+ PDF Chat Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes 2024 Chen Tang
Ben Abbatematteo
Jiaheng Hu
Rohan Chandra
Roberto Martín-Martín
Peter Stone
+ The Ingredients of Real-World Robotic Reinforcement Learning 2020 Henry Zhu
Justin Yu
Abhishek Gupta
Dhruv Shah
Kristian Hartikainen
Avi Singh
Vikash Kumar
Sergey Levine
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
+ PDF Chat Generalized Robot Learning Framework 2024 Jiahuan Yan
Zhouyang Hong
Yu Zhao
Yu Tian
Yunxin Liu
T. Claire Davies
Luhui Hu
+ PDF Chat Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes 2024 Chen Tang
Ben Abbatematteo
Jiaheng Hu
Rohan Chandra
Roberto Martín-Martín
Peter Stone
+ PDF Chat Robot Learning as an Empirical Science: Best Practices for Policy Evaluation 2024 Hadas Kress‐Gazit
Kunimatsu Hashimoto
Naveen Kuppuswamy
Paarth Shah
Phoebe Horgan
Gordon D. Richardson
Siyuan Feng
Benjamin Burchfiel

Works Cited by This (19)

Action Title Year Authors
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+ PDF Chat Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours 2016 Lerrel Pinto
Abhinav Gupta
+ CAD2RL: Real Single-Image Flight without a Single Real Image 2016 Fereshteh Sadeghi
Sergey Levine
+ PDF Chat Domain randomization for transferring deep neural networks from simulation to the real world 2017 Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2017 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
+ DeepMind Control Suite 2018 Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
+ Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research 2018 Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
Glenn Powell
Jonas Schneider
Josh Tobin
Maciek Chociej
Peter Welinder
+ Sim-to-Real Reinforcement Learning for Deformable Object Manipulation 2018 Jan Matas
Stephen James
Andrew J. Davison
+ QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation 2018 Dmitry Kalashnikov
Alex Irpan
Peter Pástor
Julian Ibarz
Alexander Herzog
Eric Jang
Deirdre Quillen
Ethan Holly
Mrinal Kalakrishnan
Vincent Vanhoucke
+ Learning Dexterous In-Hand Manipulation 2018 OpenAI