Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
ROBEL: Robotics Benchmarks for Learning with Low-Cost Robots
Michael J. Ahn
,
Henry Zhu
,
Kristian Hartikainen
,
Hugo Ponte
,
Abhishek Gupta
,
Sergey Levine
,
Vikash Kumar
Type:
Preprint
Publication Date:
2019-09-25
Citations:
9
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
ROBEL: Robotics Benchmarks for Learning with Low-Cost Robots
2019
Michael J. Ahn
Henry Zhu
Kristian Hartikainen
Hugo Ponte
Abhishek Gupta
Sergey Levine
Vikash Kumar
+
Setting up a Reinforcement Learning Task with a Real-World Robot
2018
A. Rupam Mahmood
Dmytro Korenkevych
Brent Komer
James Bergstra
+
Setting up a Reinforcement Learning Task with a Real-World Robot
2018
A. Rupam Mahmood
Dmytro Korenkevych
Brent Komer
James Bergstra
+
Benchmarking Reinforcement Learning Algorithms on Real-World Robots
2018
A. Rupam Mahmood
Dmytro Korenkevych
Gautham Vasan
William Ma
James Bergstra
+
PDF
Chat
BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
2024
Sebastian Dittert
Vincent Moens
Gianni De Fabritiis
+
Benchmarking Offline Reinforcement Learning on Real-Robot Hardware
2023
Nico Gürtler
Sebastian Blaes
Pavel Kolev
Felix Widmaier
Manuel Wüthrich
Sebastian Bauer
Bernhard Schölkopf
Georg Martius
+
RoboHive: A Unified Framework for Robot Learning
2023
Vikas Kumar
Rutav Shah
Gaoyue Zhou
Vincent Moens
Vittorio Caggiano
Jay Vakil
Abhishek Gupta
Aravind Rajeswaran
+
Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline Data in the Real World
2023
Nico Gürtler
Felix Widmaier
Cansu Sancaktar
Sebastian Blaes
Pavel Kolev
Sebastian Bauer
Manuel Wüthrich
Markus Wulfmeier
Martin Riedmiller
Arthur Allshire
+
RealAnt: An Open-Source Low-Cost Quadruped for Education and Research in Real-World Reinforcement Learning
2020
Rinu Boney
Jussi Sainio
Mikko Kaivola
Arno Solin
Juho Kannala
+
BridgeData V2: A Dataset for Robot Learning at Scale
2023
Homer Walke
Kevin Black
Abraham P. Lee
Moo Jin Kim
Max Du
Chongyi Zheng
Tony Z. Zhao
Philippe Hansen-Estruch
Quan Vuong
Andre He
+
RealAnt: An Open-Source Low-Cost Quadruped for Research in Real-World Reinforcement Learning.
2020
Rinu Boney
Jussi Sainio
Mikko Kaivola
A. A. Solin
Juho Kannala
+
PDF
Chat
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
2021
Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
2021
Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
2021
Abhishek Gupta
Justin Yu
Tony Z. Zhao
Vikash Kumar
Aaron Rovinsky
Kelvin Xu
T. Devlin
Sergey Levine
+
PDF
Chat
Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes
2024
Chen Tang
Ben Abbatematteo
Jiaheng Hu
Rohan Chandra
Roberto Martín-Martín
Peter Stone
+
The Ingredients of Real-World Robotic Reinforcement Learning
2020
Henry Zhu
Justin Yu
Abhishek Gupta
Dhruv Shah
Kristian Hartikainen
Avi Singh
Vikash Kumar
Sergey Levine
+
Benchmarking Deep Reinforcement Learning for Continuous Control
2016
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
+
PDF
Chat
Generalized Robot Learning Framework
2024
Jiahuan Yan
Zhouyang Hong
Yu Zhao
Yu Tian
Yunxin Liu
T. Claire Davies
Luhui Hu
+
PDF
Chat
Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes
2024
Chen Tang
Ben Abbatematteo
Jiaheng Hu
Rohan Chandra
Roberto Martín-Martín
Peter Stone
+
PDF
Chat
Robot Learning as an Empirical Science: Best Practices for Policy Evaluation
2024
Hadas Kress‐Gazit
Kunimatsu Hashimoto
Naveen Kuppuswamy
Paarth Shah
Phoebe Horgan
Gordon D. Richardson
Siyuan Feng
Benjamin Burchfiel
Works That Cite This (8)
Action
Title
Year
Authors
+
Learning to Drive (L2D) as a Low-Cost Benchmark for Real-World Reinforcement Learning
2020
Ari Viitala
Rinu Boney
Yi Zhao
Alexander Ilin
Juho Kannala
+
Emergent Real-World Robotic Skills via Unsupervised Off-Policy Reinforcement Learning
2020
Archit Sharma
Michael J. Ahn
Sergey Levine
Vikash Kumar
Karol Hausman
Shixiang Gu
+
A Robot Cluster for Reproducible Research in Dexterous Manipulation
2021
Stefan Bauer
Felix Widmaier
Manuel Wüthrich
Niklas Funk
Julen Urain
Jan Peters
Joe Watson
Claire Chen
Krishnan Srinivasan
Ruoyu Zhang
+
TriFinger: An Open-Source Robot for Learning Dexterity.
2020
Manuel Wüthrich
Felix Widmaier
Felix Grimminger
Joel Akpo
Shruti Joshi
Vaibhav Agrawal
Bilal Hammoud
Majid Khadiv
Miroslav Bogdanović
Vincent Berenz
+
Adaptation of Quadruped Robot Locomotion with Meta-Learning
2021
A. Kuzhamuratov
Dmitry Sorokin
Alexander E. Ulanov
A. I. Lvovsky
+
Interferobot: aligning an optical interferometer by a reinforcement learning agent.
2020
Dmitry Sorokin
Alexander E. Ulanov
Ekaterina A. Sazhina
A. I. Lvovsky
+
Efficient Exploration via State Marginal Matching
2019
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric P. Xing
Sergey Levine
Ruslan Salakhutdinov
+
DeepClaw: A Robotic Hardware Benchmarking Platform for Learning Object Manipulation
2020
Fang Wan
Haokun Wang
Xiaobo Liu
Linhan Yang
Chaoyang Song
Works Cited by This (19)
Action
Title
Year
Authors
+
Continuous control with deep reinforcement learning
2015
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+
PDF
Chat
Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours
2016
Lerrel Pinto
Abhinav Gupta
+
CAD2RL: Real Single-Image Flight without a Single Real Image
2016
Fereshteh Sadeghi
Sergey Levine
+
PDF
Chat
Domain randomization for transferring deep neural networks from simulation to the real world
2017
Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
+
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
2017
Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
+
DeepMind Control Suite
2018
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
+
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
2018
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
Glenn Powell
Jonas Schneider
Josh Tobin
Maciek Chociej
Peter Welinder
+
Sim-to-Real Reinforcement Learning for Deformable Object Manipulation
2018
Jan Matas
Stephen James
Andrew J. Davison
+
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
2018
Dmitry Kalashnikov
Alex Irpan
Peter Pástor
Julian Ibarz
Alexander Herzog
Eric Jang
Deirdre Quillen
Ethan Holly
Mrinal Kalakrishnan
Vincent Vanhoucke
+
Learning Dexterous In-Hand Manipulation
2018
OpenAI