Sets without $k$-term progressions can have many shorter progressions

Type: Preprint

Publication Date: 2019-08-26

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ PDF Chat Sets without <i>k</i>‐term progressions can have many shorter progressions 2020 Jacob Fox
Cosmin Pohoata
+ The Kelley--Meka bounds for sets free of three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ Improved bound in Roth's theorem on arithmetic progressions 2020 Tomasz Schoen
+ Improved bound in Roth's theorem on arithmetic progressions 2020 Tomasz Schoen
+ PDF Chat A quantitative improvement for Roth's theorem on arithmetic progressions: Table 1. 2016 Thomas F. Bloom
+ PDF Chat Improved bound in Roth's theorem on arithmetic progressions 2021 Tomasz Schoen
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions 2020 Thomas F. Bloom
Olof Sisask
+ PDF Chat On Roth's theorem on progressions 2011 Tom Sanders
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ PDF Chat Unique Sequences Containing No $k$-Term Arithmetic Progressions 2013 Tanbir Ahmed
Janusz Dybizbański
Hunter S. Snevily
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ k-term Arithmetic Progressions in Sumsets 2004 Ernie Croot

Works That Cite This (0)

Action Title Year Authors