Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Sets without $k$-term progressions can have many shorter progressions
Jacob Fox
,
Cosmin Pohoata
Type:
Preprint
Publication Date:
2019-08-26
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Sets without $k$-term progressions can have many shorter progressions
2019
Jacob Fox
Cosmin Pohoata
+
PDF
Chat
Sets without <i>k</i>‐term progressions can have many shorter progressions
2020
Jacob Fox
Cosmin Pohoata
+
The Kelley--Meka bounds for sets free of three-term arithmetic progressions
2023
Thomas F. Bloom
Olof Sisask
+
Improved bound in Roth's theorem on arithmetic progressions
2020
Tomasz Schoen
+
Improved bound in Roth's theorem on arithmetic progressions
2020
Tomasz Schoen
+
PDF
Chat
A quantitative improvement for Roth's theorem on arithmetic progressions: Table 1.
2016
Thomas F. Bloom
+
PDF
Chat
Improved bound in Roth's theorem on arithmetic progressions
2021
Tomasz Schoen
+
New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$
2024
Christian Elsholtz
Laura Proske
Lisa Sauermann
+
Progression-free sets in Z_4^n are exponentially small
2016
Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+
Progression-free sets in Z_4^n are exponentially small
2016
Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+
Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions
2020
Thomas F. Bloom
Olof Sisask
+
PDF
Chat
On Roth's theorem on progressions
2011
Tom Sanders
+
The large $k$-term progression-free sets in $\mathbb{Z}_q^n$
2016
Hongze Li
+
A note on the large progression-free sets in Z_q^n
2016
Hongze Li
+
PDF
Chat
Unique Sequences Containing No $k$-Term Arithmetic Progressions
2013
Tanbir Ahmed
Janusz Dybizbański
Hunter S. Snevily
+
PDF
Chat
Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields
2024
Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+
PDF
Chat
Sets of Integers that do not Contain Long Arithmetic Progressions
2011
Kevin O’Bryant
+
The large progression-free sets in Z_q^n
2016
Hongze Li
+
Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small
2020
Gábor Hegedüs
+
k-term Arithmetic Progressions in Sumsets
2004
Ernie Croot
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (4)
Action
Title
Year
Authors
+
PDF
Chat
Dependent random choice
2010
Jacob Fox
Benny Sudakov
+
A new proof of Szemerédi's theorem
2001
W. T. Gowers
+
A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four
1998
W. T. Gowers
+
New Proofs of Pl\"unnecke-type Estimates for Product Sets in Groups
2011
Giorgis Petridis