Instability of solitons–revisited, II: The supercritical Zakharov-Kuznetsov equation

Type: Other

Publication Date: 2019-01-01

Citations: 7

DOI: https://doi.org/10.1090/conm/725/14547

Abstract

We revisit the phenomenon of instability of solitons in the two dimensional generalization of the Korteweg-de Vries equation, the generalized Zakharov-Kuznetsov (ZK) equation, $u_t + \partial_{x_1} (\Delta u + u^p) = 0, (x_1,x_2) \in \mathbb R^2$. It is known that solitons are unstable in this two dimensional equation for nonlinearities $p > 3$. This was shown by Anne de Bouard in [4] generalizing the arguments of Bona-Souganidis-Strauss in [1] for the generalized KdV equation. In this paper, we use a different method to obtain the instability of solitons, namely, truncation and monotonicity properties. Not only does this approach simplify the proof, but it can also be useful for studying various other stability questions in the ZK equation as well as other generalizations of the KdV equation.

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Instability of solitons - revisited, II: the supercritical Zakharov-Kuznetsov equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons - revisited, II: the supercritical Zakharov-Kuznetsov equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons in the 2d cubic Zakharov-Kuznetsov equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat On instability of solitons in the 2d cubic Zakharov–Kuznetsov equation 2019 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat Instability of Solitons in the 2d Cubic Zakharov-Kuznetsov Equation 2019 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat Instability of solitons–revisited, I: The critical generalized KdV equation 2019 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat Asymptotic Stability of High-dimensional Zakharov–Kuznetsov Solitons 2015 Raphaël Côte
Claudio Muñoz
Didier Pilod
Gideon Simpson
+ PDF Chat A study of Long time behaviours of solutions of Zakharov-Kuznetsov Equations 2020 Frédéric Valet
+ PDF Chat Numerical study of soliton stability, resolution and interactions in the 3D Zakharov–Kuznetsov equation 2021 Christian Klein
Svetlana Roudenko
Nikola Stoilov
+ Soliton solutions and modulation instability analysis of the coupled Zakharov-Kuznetsov equation 2019 Vineesh Kumar
Arvind Patel
+ PDF Chat Bifurcation Phenomena of Nonlinear Waves in a Generalized Zakharov-Kuznetsov Equation 2013 Yun Wu
Zhengrong Liu
+ Asymptotic K-soliton-like Solutions of the Zakharov-Kuznetsov type equations 2020 Frédéric Valet
+ PDF Chat On the near soliton dynamics for the 2D cubic Zakharov-Kuznetsov equations 2024 Gong Chen
Lan Yang
Yuan Xu
+ PDF Chat Stability criterion for solitons of the Zakharov–Kuznetsov-type equations 2018 E. A. Kuznetsov
+ PDF Chat Numerical Study of Zakharov–Kuznetsov Equations in Two Dimensions 2021 Christian Klein
Svetlana Roudenko
Nikola Stoilov
+ Solitary wave solutions and kink wave solutions for a generalized Zakharov–Kuznetsov equation 2009 Ming Song
Cai Jiong-hui
+ PDF Chat Asymptotic Stability of Zakharov-Kuznetsov solitons 2015 Didier Pilod
+ PDF Chat Nonexistence of minimal mass blow-up solution for the 2D cubic Zakharov-Kuznetsov equation 2024 Gong Chen
Lan Yang
Xu Yuan