Bifurcation Phenomena of Nonlinear Waves in a Generalized Zakharov-Kuznetsov Equation
Bifurcation Phenomena of Nonlinear Waves in a Generalized Zakharov-Kuznetsov Equation
We study the bifurcation phenomena of nonlinear waves described by a generalized Zakharov-Kuznetsov equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mi>a</mml:mi><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mfenced><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>γ</mml:mi><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi><mml:mi>x</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>δ</mml:mi><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi><mml:mi>y</mml:mi><mml:mi>y</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math>. We reveal four kinds of interesting bifurcation phenomena. The first kind is that the low-kink waves can be bifurcated from the symmetric solitary waves, the 1-blow-up waves, the tall-kink waves, and the antisymmetric …