Application of character estimates to the number of 𝑇<sub>2</sub>-systems of the alternating group

Type: Article

Publication Date: 2019-05-07

Citations: 0

DOI: https://doi.org/10.1515/jgth-2019-2049

Abstract

Abstract We use character theory and character estimates to show that the number of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mi>T</m:mi><m:mn>2</m:mn></m:msub></m:math> {T_{2}} -systems of the alternating group <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mi>A</m:mi><m:mi>n</m:mi></m:msub></m:math> {A_{n}} is at least <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>8</m:mn><m:mo>⁢</m:mo><m:mi>n</m:mi><m:mo>⁢</m:mo><m:msqrt><m:mn>3</m:mn></m:msqrt></m:mrow></m:mfrac><m:mo>⁢</m:mo><m:mrow><m:mi>exp</m:mi><m:mo>⁡</m:mo><m:mrow><m:mo maxsize="210%" minsize="210%">(</m:mo><m:mrow><m:mfrac><m:mrow><m:mn>2</m:mn><m:mo>⁢</m:mo><m:mi>π</m:mi></m:mrow><m:msqrt><m:mn>6</m:mn></m:msqrt></m:mfrac><m:mo>⁢</m:mo><m:msup><m:mi>n</m:mi><m:mrow><m:mn>1</m:mn><m:mo>/</m:mo><m:mn>2</m:mn></m:mrow></m:msup></m:mrow><m:mo maxsize="210%" minsize="210%">)</m:mo></m:mrow></m:mrow><m:mo>⁢</m:mo><m:mrow><m:mo stretchy="false">(</m:mo><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:mrow><m:mi>o</m:mi><m:mo>⁢</m:mo><m:mrow><m:mo stretchy="false">(</m:mo><m:mn>1</m:mn><m:mo stretchy="false">)</m:mo></m:mrow></m:mrow></m:mrow><m:mo stretchy="false">)</m:mo></m:mrow></m:mrow><m:mo>.</m:mo></m:mrow></m:math> \frac{1}{8n\sqrt{3}}\exp\biggl{(}\frac{2\pi}{\sqrt{6}}n^{1/2}\biggr{)}(1+o(1)). Applying this result, we obtain a lower bound for the number of connected components of the product replacement graph <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:msub><m:mi mathvariant="normal">Γ</m:mi><m:mn>2</m:mn></m:msub><m:mo>⁢</m:mo><m:mrow><m:mo stretchy="false">(</m:mo><m:msub><m:mi>A</m:mi><m:mi>n</m:mi></m:msub><m:mo stretchy="false">)</m:mo></m:mrow></m:mrow></m:math> {\Gamma_{2}(A_{n})} .

Locations

  • Journal of Group Theory - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On Thompson’s Conjecture for Alternating Groups<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>+</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2014 Shitian Liu
Yong Yang
+ A characterization of the alternating groups 1971 Takeshi Kondo
+ A characterization of alternating groups 2005 В. Д. Мазуров
+ PDF Chat On the universality of words for the alternating groups 1986 Manfred Droste
+ Character degrees and nilpotence class of finite 𝑝-groups: An approach via pro-𝑝 groups 2002 Andrei Jaikin‐Zapirain
Alexander Moretó
+ PDF Chat The universality of words 𝑥^{𝑟}𝑦^{𝑠} in alternating groups 1986 J. L. Brenner
Ron Evans
D. M. Silberger
+ PDF Chat On the irreducible representations of the alternating group which remain irreducible in characteristic 𝑝 2010 Matthew Fayers
+ Enumerating classes and characters of 𝑝-groups 2015 E. A. O’Brien
Christopher Voll
+ Chapter 2. Permutation Groups and Alternating Groups 2022
+ Chapter 2. Permutation Groups and Alternating Groups 2022
+ PDF Chat String C-group representations of alternating groups 2019 Maria Elisa Fernandes
Dimitri Leemans
+ A Characterization of the Alternating Group of Degree 8 1963 W. J. Wong
+ Automorphism Groups of Two Generator Metabelian Groups 1987 S. Bachmuth
Gilbert Baumslag
Joan L. Dyer
H. Y. Mochizuki
+ Characters of groups of order <i>pq</i> 2001 Gordon James
Martin W. Liebeck
+ String C-group representations of alternating groups 2018 Maria Elisa Fernandes
Dimitri Leemans
+ String C-group representations of alternating groups 2018 Maria Elisa Fernandes
Dimitri Leemans
+ Characters of SL(2,𝑝ⁿ) 1998 Ya. Berkovich
E. Zhmudâ€
+ Groups with a character of large degree 2008 Noah Snyder
+ Groups described by element numbers 2013 Hermann Heineken
Francesco G. Russo
+ Alternating forms and the Brauer group of a geometric field 2007 Eric Brussel

Works That Cite This (0)

Action Title Year Authors