Bounding the Smallest Singular Value of a Random Matrix Without Concentration

Type: Article

Publication Date: 2015-03-31

Citations: 144

DOI: https://doi.org/10.1093/imrn/rnv096

Abstract

Given X a random vector in R n , set X 1 , ..., X N to be independent copies of X and let Γ = 1 √ N N i=1 X i , • e i be the matrix whose rows are X1 √ N , . . ., XN √ N .We obtain sharp probabilistic lower bounds on the smallest singular value λ min (Γ) in a rather general situation, and in particular, under the assumption that X is an isotropic random vector for which sup t∈S n-1 E| t, X | 2+η ≤ L for some L, η > 0. Our results imply that a Bai-Yin type lower bound holds for η > 2, and, up to a log-factor, for η = 2 as well.The bounds hold without any additional assumptions on the Euclidean norm X ℓ n 2 .Moreover, we establish a nontrivial lower bound even without any higher moment assumptions (corresponding to the case η = 0), if the linear forms satisfy a weak 'small ball' property.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Bounding the smallest singular value of a random matrix without concentration 2013 Vladimir Koltchinskii
Shahar Mendelson
+ Bounding the smallest singular value of a random matrix without concentration 2013 Vladimir Koltchinskii
Shahar Mendelson
+ PDF Chat Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition 2015 Pavel Yaskov
+ PDF Chat The smallest singular value for rectangular random matrices with L\'evy entries 2024 Y. F. Han
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ An upper bound on the smallest singular value of a square random matrix 2018 Kateryna Tatarko
+ An upper bound on the smallest singular value of a square random matrix 2018 Kateryna Tatarko
+ PDF Chat Quantitative estimates of the singular values of random i.i.d. matrices 2024 Guozheng Dai
Zhonggen Su
Hanchao Wang
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2014 Konstantin Tikhomirov
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2014 Konstantin Tikhomirov
+ Smoothed analysis of the least singular value without inverse Littlewood-Offord theory. 2019 Vishesh Jain
+ Smallest singular value of sparse random matrices 2011 A. G. Litvak
Omar Rivasplata
+ Smallest singular value of sparse random matrices 2011 Alexander E. Litvak
Omar Rivasplata
+ On the smallest singular value of symmetric random matrices 2020 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+ On the smallest singular value of symmetric random matrices 2020 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+ PDF Chat The probabilistic estimates on the largest and smallest $q$-singular values of random matrices 2014 Ming‐Jun Lai
Yang Liu
+ PDF Chat Smallest singular value of sparse random matrices 2012 Alexander E. Litvak
Omar Rivasplata
+ PDF Chat On the singular values of random matrices 2014 Shahar Mendelson
Grigoris Paouris
+ The least singular value of a random square matrix is O(n^{-1/2}) 2008 Mark Rudelson
Roman Vershynin