Ask a Question

Prefer a chat interface with context about you and your work?

The smallest singular value for rectangular random matrices with L\'evy entries

The smallest singular value for rectangular random matrices with L\'evy entries

Let $X=(x_{ij})\in\mathbb{R}^{N\times n}$ be a rectangular random matrix with i.i.d. entries (we assume $N/n\to\mathbf{a}>1$), and denote by $\sigma_{min}(X)$ its smallest singular value. When entries have mean zero and unit second moment, the celebrated work of Bai-Yin and Tikhomirov show that $n^{-\frac{1}{2}}\sigma_{min}(X)$ converges almost surely to $\sqrt{\mathbf{a}}-1.$ However, little is known …