Type: Article
Publication Date: 2015-01-01
Citations: 6
DOI: https://doi.org/10.1155/2015/187284
This paper addresses the set-point control problem of a one-dimensional heat equation with in-domain actuation. The proposed scheme is based on the framework of zero-dynamics inverse combined with flat system control. Moreover, the set-point control is cast into a motion planning problem of a multiple-input, multiple-output system, which is solved by a Green’s function-based reference trajectory decomposition. The validity of the proposed method is assessed through the analysis of the invertibility of the map generated by Green’s function and the convergence of the regulation error. The performance of the developed control scheme and the viability of the proposed approach are confirmed by numerical simulation of a representative system.