ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation

Type: Preprint

Publication Date: 2019-06-01

Citations: 1184

DOI: https://doi.org/10.1109/cvpr.2019.00262

Abstract

Semantic segmentation is a key problem for many computer vision tasks. While approaches based on convolutional neural networks constantly break new records on different benchmarks, generalizing well to diverse testing environments remains a major challenge. In numerous real-world applications, there is indeed a large gap between data distributions in train and test domains, which results in severe performance loss at run-time. In this work, we address the task of unsupervised domain adaptation in semantic segmentation with losses based on the entropy of the pixel-wise predictions. To this end, we propose two novel, complementary methods using (i) entropy loss and (ii) adversarial loss respectively. We demonstrate state-of-the-art performance in semantic segmentation on two challenging “synthetic-2-real” set-ups and show that the approach can also be used for detection.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation 2018 Tuan-Hung Vu
Himalaya Jain
Maxime Bucher
Matthieu Cord
Patrick Pérez
+ PDF Chat PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency Training 2021 Luke Melas-Kyriazi
Arjun K. Manrai
+ PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency Training 2021 Luke Melas-Kyriazi
Arjun K. Manrai
+ Robust Unsupervised Domain Adaptation by Retaining Confident Entropy via Edge Concatenation 2023 Hye-Seong Hong
Abhishek Kumar
Dong-Gyu Lee
+ PDF Chat Find it if you can: end-to-end adversarial erasing for weakly-supervised semantic segmentation 2021 Erik Stammes
Tom F. H. Runia
Michael Hofmann
Mohsen Ghafoorian
+ Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised Semantic Segmentation 2020 Erik Stammes
Tom F. H. Runia
Michael Hofmann
Mohsen Ghafoorian
+ Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised Semantic Segmentation 2020 Erik Stammes
Tom F. H. Runia
Michael Hofmann
Mohsen Ghafoorian
+ Unsupervised Domain Adaptation for Semantic Segmentation with GANs. 2017 Swami Sankaranarayanan
Yogesh Balaji
Arpit Jain
Ser-Nam Lim
Rama Chellappa
+ Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation 2021 Jinyu Yang
Chunyuan Li
Weizhi An
Hehuan Ma
Yuzhi Guo
Yu Rong
Peilin Zhao
Junzhou Huang
+ Learning to Adapt Structured Output Space for Semantic Segmentation 2018 Yi–Hsuan Tsai
Wei-Chih Hung
Samuel Schulter
Kihyuk Sohn
Ming–Hsuan Yang
Manmohan Chandraker
+ PDF Chat Learning to Adapt Structured Output Space for Semantic Segmentation 2018 Yi–Hsuan Tsai
Wei-Chih Hung
Samuel Schulter
Kihyuk Sohn
Ming–Hsuan Yang
Manmohan Chandraker
+ PDF Chat Classes Matter: A Fine-Grained Adversarial Approach to Cross-Domain Semantic Segmentation 2020 Haoran Wang
Tong Shen
Wei Zhang
Ling‐Yu Duan
Tao Mei
+ Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation Method for Semantic Segmentation 2020 Zhonghao Wang
Yunchao Wei
Rogerior Feris
Jinjun Xiong
Wen‐mei Hwu
Thomas S. Huang
Humphrey Shi
+ Penalizing Top Performers: Conservative Loss for Semantic Segmentation Adaptation 2018 Xinge Zhu
Hui Zhou
Ceyuan Yang
Jianping Shi
Dahua Lin
+ PDF Chat Reimagine BiSeNet for Real-Time Domain Adaptation in Semantic Segmentation 2021 Antonio Tavera
Carlo Masone
Barbara Caputo
+ Reimagine BiSeNet for Real-Time Domain Adaptation in Semantic Segmentation 2021 Antonio Tavera
Carlo Masone
Barbara Caputo
+ Reimagine BiSeNet for Real-Time Domain Adaptation in Semantic Segmentation. 2021 Antonio Tavera
Carlo Masone
Barbara Caputo
+ Semantic Distribution-aware Contrastive Adaptation for Semantic Segmentation 2021 Shuang Li
Binhui Xie
Bin Zang
Chi Harold Liu
Xinjing Cheng
Ruigang Yang
Guoren Wang
+ Lookahead Adversarial Semantic Segmentation. 2020 Hadi Jamali Rad
Attila Szabó
Matteo Presutto
+ BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation 2021 Thanh-Dat Truong
Chi Nhan Duong
Ngan Le
Son Lam Phung
Chase Rainwater
Khoa Luu

Works That Cite This (560)

Action Title Year Authors
+ PDF Chat Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation 2022 Jin Hong
Yudong Zhang
Weitian Chen
+ PDF Chat BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation 2021 Thanh-Dat Truong
Chi Nhan Duong
Ngan Le
Son Lam Phung
Chase Rainwater
Khoa Luu
+ PDF Chat Generalizable model-agnostic semantic segmentation via target-specific normalization 2021 Jian Zhang
Lei Qi
Yinghuan Shi
Yang Gao
+ PDF Chat DA-DETR: Domain Adaptive Detection Transformer with Information Fusion 2023 Jingyi Zhang
Jiaxing Huang
Zhipeng Luo
Gongjie Zhang
Xiaoqin Zhang
Shijian Lu
+ PDF Chat Distribution regularized self-supervised learning for domain adaptation of semantic segmentation 2022 Javed Iqbal
Hamza Rawal
Rehan Hafiz
Yu-Tseh Chi
Mohsen Ali
+ PDF Chat MetaPix: Domain transfer for semantic segmentation by meta pixel weighting 2021 Yiren Jian
Chongyang Gao
+ PDF Chat A New Learning Paradigm for Foundation Model-Based Remote-Sensing Change Detection 2024 Kaiyu Li
Xiangyong Cao
Deyu Meng
+ PDF Chat Domain Adaptive Video Segmentation via Temporal Pseudo Supervision 2022 Yun Xing
Dayan Guan
Jiaxing Huang
Shijian Lu
+ PDF Chat Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation 2020 Karthik Gopinath
Christian Desrosiers
Hervé Lombaert
+ PDF Chat Online Domain Adaptation for Semantic Segmentation in Ever-Changing Conditions 2022 Theodoros Panagiotakopoulos
Pier Luigi Dovesi
Linus Härenstam-Nielsen
Matteo Poggi