Bound States for Rapidly Oscillatory Schrödinger Operators in Dimension 2

Type: Article

Publication Date: 2018-01-01

Citations: 5

DOI: https://doi.org/10.1137/16m1099352

Abstract

We study the eigenvalues of Schrödinger operators $-\Delta_{{R}^2} + V_\epsilon$ on ${R}^2$ with rapidly oscillatory potential: $V_\varepsilon(x) = W(x,x/\varepsilon)$ with $W \in C^\infty_0({R}^2 \times ({R}/(2\pi {Z}))^2,{R})$ satisfying $\int_{ [0,2\pi]^2} W(x,y) dy = 0$. We show that for $\varepsilon$ small enough, such operators have a unique negative eigenvalue, exponentially close to 0.

Locations

  • arXiv (Cornell University) - View - PDF
  • SIAM Journal on Mathematical Analysis - View

Similar Works

Action Title Year Authors
+ Bound states for rapidly oscillatory Schrödinger operators in dimension 2 2016 Alexis Drouot
+ Bound states for rapidly oscillatory Schr\"odinger operators in dimension 2 2016 Alexis Drouot
+ Bound states for rapidly oscillating Schr\"odinger operators in dimension 2 2016 Alexis Drouot
+ PDF Chat Improved Eigenvalue Bounds for Schrödinger Operators with Slowly Decaying Potentials 2019 Jean‐Claude Cuenin
+ PDF Chat Schrödinger Operators with Rapidly Oscillating Potentials 2007 Itaru Sasaki
+ Schr\"odinger operators with rapidly oscillating potentials 2007 Itaru Sasaki
+ Improved eigenvalue bounds for Schrödinger operators with slowly decaying potentials 2019 Jean-Claude Cuenin
+ Eigenvalues of Schroedinger operators with potential asymptotically homogeneous of degree -2 2005 Andrew Hassell
Simon Marshall
+ Improved eigenvalue bounds for Schr\"odinger operators with slowly decaying potentials. 2019 Jean-Claude Cuenin
+ Discrete Schrödinger operators with decaying and oscillating potentials 2021 Rupert L. Frank
Simon Larson
+ Schrödinger operators with highly singular oscillating potentials 1992 Karl‐Theodor Sturm
+ PDF Chat Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree $-2$ 2008 Andrew Hassell
Simon Marshall
+ Discrete spectrum of Schrödinger operators with oscillating decaying potentials 2015 Georgi Raikov
+ Discrete spectrum of Schr\"odinger operators with oscillating decaying potentials 2015 Georgi Raikov
+ PDF Chat A Weighted Dispersive Estimate for Schrödinger Operators in Dimension Two 2012 M. Burak Erdoğan
William R. Green
+ Oscillatory eigenvalue branches for Schrödinger operators with strongly coupled magnetic fields 1999 Rainer Hempel
+ PDF Chat Bound states for logarithmic Schrödinger equations with potentials unbounded below 2020 Chengxiang Zhang
Xu Zhang
+ Discrete spectrum for Schrödinger operators with oscillating decaying potentials 2016 Georgi Raikov
+ Wave operators for the Schroedinger equation with a slowly decreasing potential 1970 V. S. Buslaev
V. B. Matveev
+ PDF Chat Perturbations of the Wigner-Von Neumann Potential Leaving the Embedded Eigenvalue Fixed 2002 Jaime Cruz-Sampedro
Ira Herbst
Rubén A. Martı́nez-Avendaño