Type: Article
Publication Date: 2018-07-11
Citations: 4
DOI: https://doi.org/10.1186/s13661-018-1025-8
We use the non-Nehari manifold method to deal with the system $$ \textstyle\begin{cases} -\Delta u+V(x)u+\phi u= (\int_{\mathbb{R}^{3}}\frac {Q(y)F(u(y))}{|x-y|^{\mu}}\,dy )Q(x)f(u(x)),\quad x\in\mathbb{R}^{3}, \\ -\Delta\phi=u^{2}, \quad u \in H^{1}(\mathbb{R}^{3}), \end{cases} $$ where $V(x)$ and $Q(x)$ are periodic and asymptotically periodic in x. Under some mild conditions on f, we establish the existence of the Nehari type ground state solutions in two cases: the periodic one and the asymptotically periodic case.