Type: Paratext
Publication Date: 2017-11-01
Citations: 20
DOI: https://doi.org/10.26421/qic17.13-14
Determining whether a given integer is prime or composite is a basic task in number theory. We present a primality test based on quantum order finding and the converse of Fermat's theorem. For an integer $N$, the test tries to find an element of the multiplicative group of integers modulo $N$ with order $N-1$. If one is found, the number is known to be prime. During the test, we can also show most of the times $N$ is composite with certainty (and a witness) or, after $\log\log N$ unsuccessful attempts to find an element of order $N-1$, declare it composite with high probability. The algorithm requires $O((\log n)^2 n^3)$ operations for a number $N$ with $n$ bits, which can be reduced to $O(\log\log n (\log n)^3 n^2)$ operations in the asymptotic limit if we use fast multiplication.