Resilience of hidden order to symmetry-preserving disorder

Type: Article

Publication Date: 2017-12-20

Citations: 5

DOI: https://doi.org/10.1103/physrevb.96.214206

Abstract

We study the robustness of non-local string order in two paradigmatic disordered spin-chain models, a spin-1/2 cluster-Ising and a spin-1 XXZ Heisenberg chain. In the clean case, they both display a transition from antiferromagnetic to string order. Applying a disorder which preserves the Hamiltonian symmetries, we find that the transition persists in both models. In the disordered cluster-Ising model we can study the transition analytically -- by applying the strongest coupling renormalization group -- and numerically -- by exploiting integrability to study the antiferromagnetic and string order parameters. We map the model into a quadratic fermion chain, where the transition appears as a change in the number of zero-energy edge modes. We also explore its zero-temperature-singularity behavior and find a transition from a non-singular to a singular region, at a point that is different from the one separating non-local and local ordering.} The disordered Heisenberg chain can be treated only numerically: by means of MPS-based simulations, we are able to locate the existence of a transition between antiferromagnetic and string-ordered phase, through the study of order parameters. Finally we discuss possible connections of our findings with many body localization.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • CINECA IRIS Institutial research information system (University of Pisa) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Structural properties of local integrals of motion across the many-body localization transition via a fast and efficient method for their construction 2022 Safa Adami
Mohsen Amini
Morteza Soltani
+ PDF Chat Fragility of string orders 2007 Fabrizio Anfuso
Achim Rosch
+ PDF Chat Report on 1901.02891v1 2019 M. Goihl
Christian Krumnow
Marek Gluza
Jens Eisert
Nicolas Tarantino
+ PDF Chat Report on 1901.02891v1 2019 M. Goihl
Christian Krumnow
Marek Gluza
Jens Eisert
Nicolas Tarantino
+ PDF Chat Disorder-induced phases in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>antiferromagnetic Heisenberg chain 2005 Péter Lajkó
Enrico Carlon
Heiko Rieger
Ferenc Iglói
+ PDF Chat Disorder protected and induced local zero-modes in longer-range Kitaev chains 2018 Simon Lieu
Derek K. K. Lee
Johannes Knolle
+ PDF Chat Edge mode locality in perturbed symmetry protected topological order 2019 M. Goihl
Christian Krumnow
Marek Gluza
Jens Eisert
Nicolas Tarantino
+ Perturbative instability of nonergodic phases in non-Abelian quantum chains 2021 Brayden Ware
Dmitry A. Abanin
Romain Vasseur
+ PDF Chat Emergent phase transitions in a cluster Ising model with dissipation 2022 Zheng-Xin Guo
Xue-Jia Yu
Xi-Dan Hu
Zhi Li
+ PDF Chat Report on 1901.02891v2 2019 M. Goihl
Christian Krumnow
Marek Gluza
Jens Eisert
Nicolas Tarantino
+ PDF Chat Report on 1901.02891v3 2019 M. Goihl
Christian Krumnow
Marek Gluza
Jens Eisert
Nicolas Tarantino
+ PDF Chat Many-body localization: stability and instability 2017 Wojciech De Roeck
John Imbrie
+ Can we observe the many-body localization? 2021 Piotr Sierant
Jakub Zakrzewski
+ PDF Chat Destruction of string order after a quantum quench 2016 Marcello Calvanese Strinati
Leonardo Mazza
Manuel Endres
Davide Rossini
Rosario Fazio
+ PDF Chat Quantum phase transition between topologically distinct quantum critical points 2024 Xue-Jia Yu
Weilin Li
+ PDF Chat Fragmentation and Emergent Integrable Transport in the Weakly Tilted Ising Chain 2022 Alvise Bastianello
Umberto Borla
Sergej Moroz
+ Exploring many-body localization in quantum systems coupled to an environment via Wegner-Wilson flows 2019 Shane P. Kelly
Rahul Nandkishore
Jamir Marino
+ Landau Framework for Topological Order: Quantum Chains and Ladders 2016 Gennady Y. Chitov
Toplal Pandey
+ Symmetry-Enriched Criticality in a Coupled Spin-Ladder 2023 Suman Mondal
Adhip Agarwala
Tapan Mishra
Abhishodh Prakash
+ Bath-engineering magnetic order in quantum spin chains: An analytic mapping approach 2024 Brett Min
Nicholas Anto-Sztrikacs
Marlon Brenes
Dvira Segal

Works Cited by This (28)

Action Title Year Authors
+ PDF Chat Majorana fermions in superconducting wires: Effects of long-range hopping, broken time-reversal symmetry, and potential landscapes 2013 Wade DeGottardi
Manisha Thakurathi
Smitha Vishveshwara
Diptiman Sen
+ PDF Chat Ground-state phase diagram of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mn /></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>XXZ</mml:mi></mml:math>chains with uniaxial single-ion-type anisotropy 2003 Wei Chen
Kazuo Hida
B. C. Sanctuary
+ PDF Chat Phase transitions between topologically distinct gapped phases in isotropic spin ladders 2000 Eugene H. Kim
Gábor Fáth
J. Sólyom
D. J. Scalapino
+ PDF Chat Phase Diagram of the Random Heisenberg Antiferromagnetic Spin-1 Chain 2002 A. Saguia
B. Boechat
M. A. Contínentino
+ PDF Chat Statistical mechanics of the cluster Ising model 2011 Pietro Smacchia
Luigi Amico
Paolo Facchi
Rosario Fazio
Giuseppe Florio
Saverio Pascazio
Vlatko Vedral
+ PDF Chat Finite-size scaling of string order parameters characterizing the Haldane phase 2008 Hiroshi Ueda
Hiroki Nakano
Koichi Kusakabe
+ PDF Chat Topological characterization of periodically driven quantum systems 2010 Takuya Kitagawa
Erez Berg
Mark S. Rudner
Eugene Demler
+ PDF Chat Symmetry protection of topological phases in one-dimensional quantum spin systems 2012 Frank Pollmann
Erez Berg
Ari M. Turner
Masaki Oshikawa
+ Hidden<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>×<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>symmetry breaking in Haldane-gap … 1992 Tom Kennedy
Hal Tasaki
+ PDF Chat Strongly disordered spin ladders 2002 R. Mélin
Yu‐Cheng Lin
Péter Lajkó
Heiko Rieger
Ferenc Iglói