3-Manifolds with abelian embeddings in S4

Type: Article

Publication Date: 2019-12-13

Citations: 2

DOI: https://doi.org/10.1142/s0218216520500017

Abstract

We consider embeddings of 3-manifolds in $S^4$ such that each of the two complementary regions has an abelian fundamental group. In particular, we show that an homology handle $M$ has such an embedding if and only if $\pi_1(M)'$ is perfect, and that the embedding is then essentially unique.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Knot Theory and Its Ramifications - View

Similar Works

Action Title Year Authors
+ PDF Chat 3-Manifolds with nilpotent embeddings in S4 2020 Jonathan A. Hillman
+ PDF Chat Locally flat embeddings of 3-manifolds in $S^4$ 2024 J. A. Hillman
+ $4$-manifolds with boundary and fundamental group $\mathbb{Z}$ 2022 Anthony Conway
Lisa Piccirillo
Mark Powell
+ Maps from 3-manifolds to 4-manifolds that induce isomorphisms on $Ļ€_1$ 2021 Hongbin Sun
Zhongzi Wang
+ Heegaard Floer invariants in codimension one 2016 Adam Simon Levine
Daniel Ruberman
+ Heegaard Floer invariants in codimension one 2016 Adam Simon Levine
Daniel Ruberman
+ $4$-manifolds with boundary and fundamental group $\mathbb{Z}$ 2025 Anthony Conway
Lisa Piccirillo
Mark Powell
+ Topological 4-manifolds with 4-dimensional fundamental group 2020 Daniel Kasprowski
Markus Land
+ PDF Chat Residually free 3ā€“manifolds 2008 Henry Wilton
+ Embeddings of $3$--manifolds via open books 2018 Dishant M. Pancholi
Suhas Pandit
Kuldeep Saha
+ Embeddings of $3$--manifolds via open books 2018 Dishant M. Pancholi
Suhas Pandit
Kuldeep Saha
+ PDF Chat On lens spaces bounding smooth 4-manifolds with $\boldsymbol{b_2=1}$ 2024 Woohyeok Jo
Jongā€Il Park
Kyungbae Park
+ PDF Chat Exotic families of embeddings 2025 Dave Auckly
Daniel Ruberman
+ PDF Chat Simplifying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn></mml:math>-manifolds in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>ā„</mml:mi></mml:mrow> <mml:mn>4</mml:mn> </mml:msup></mml:math> 2016 Ian Agol
Michael J. Freedman
+ Invariants of embeddings of 2-surfaces in 3-space 2022 A. Skopenkov
+ LIFTING $\pi_1$- INJECTIVE SURFACES IMMERSED IN 3-MANIFOLDS : A BRIEF SURVEY (Low-Dimensional Topology of Tomorrow) 2002 Saburo Matsumoto
+ Homotopy types of 4-manifolds with 3-manifold fundamental groups 2023 Jonathan A. Hillman
+ Embedding homology equivalent 3-manifolds in 4-space 1996 Jonathan A. Hillman
+ Embedding homology equivalent 3-manifolds in 4-space 1996 Jonathan A. Hillman
+ Cohomological invariants of representations of 3-manifold groups 2019 Haimiao Chen