Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A NUMERICAL AND THEORETICAL STUDY OF BLOW-UP FOR A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS USING THE SUNDMAN TRANSFORMATION
Ronald D. Haynes
,
Colin Turner
Type:
Article
Publication Date:
2007-01-01
Citations:
10
Share
Similar Works
Action
Title
Year
Authors
+
Numerical Solution of Ordinary Differential Equations
2021
Ashish Tewari
+
Numerical Analysis on Time Scales
2022
Svetlin G. Georgiev
İncı M. Erhan
+
An Overview of Numerical and Analytical Methods for solving Ordinary Differential Equations
2020
Byakatonda Denis
+
An Overview of Numerical and Analytical Methods for solving Ordinary Differential Equations
2020
Byakatonda Denis
+
Solving differential equations fast, precisely, and reliably
2024
+
Numerical Methods and Model Analysis
2021
Idoia Cortes Garcia
+
Numerical MMATh Verified essential algorithms for solving differential equations
2019
Stefan Hölle
+
Ordinary differential equations using MATLAB
1995
John Polkinghorne
Arnold David
+
Ordinary Differential Equations
2015
Robert Johansson
+
Ordinary Differential Equations and Applications I: With Maple Examples
2024
Benjamin Oyediran Oyelami
+
Solving ODEs with MATLAB
2003
L. F. Shampine
I. Gladwell
S. Thompson
+
The MATLAB ODE Suite
1997
L. F. Shampine
Mark W. Reichelt
+
Applied Differential Equations
2018
Vladimir A. Dobrushkin
+
ATOMFT: solving ODEs and DAEs using Taylor series
1994
Yao‐Feng Chang
George F. Corliss
+
Differential Equation Solutions with MATLAB®
2020
Dingyü Xue
+
Differential Equations
1976
D. M. Hirst
+
Differential Equations
1989
Peter Turner
+
MATLAB Differential Equations
2014
César Pérez López
+
Numerical methods for differential equations and simulation
1979
+
Introduction to computation and modeling for differential equations
2009
Lennart Edsberg
Works That Cite This (9)
Action
Title
Year
Authors
+
PDF
Chat
Blow-up phenomena in the model of a space charge stratification in semiconductors: numerical analysis of original equation reduction to a differential-algebraic system
2016
Д.В. Лукьяненко
Alexander Anatolyevich Panin
+
Numerical Solution of Blow-Up Problems for Nonlinear Wave Equations on Unbounded Domains
2013
Hermann Brunner
Hongwei Li
Xiaonan Wu
+
PDF
Chat
Some features of numerical diagnostics of instantaneous blow-up of the solution by the example of solving the equation of slow diffusion
2021
И.В. Пригорный
Alexander Anatolyevich Panin
Д.В. Лукьяненко
+
Non-linear blow-up problems for systems of ODEs and PDEs: Non-local transformations, numerical and exact solutions
2019
Andrei D. Polyanin
Inna K. Shingareva
+
Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem
2022
Raul Argun
В. Т. Волков
D. V. Lukyanenko
+
PDF
Chat
On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front
2021
Raul Argun
Alexandr Gorbachev
D. V. Lukyanenko
Maxim Shishlenin
+
Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics
2019
D. V. Lukyanenko
Н. Н. Нефедов
+
PDF
Chat
Об особенностях численной диагностики мгновенного разрушения решения на примере решения уравнения медленной диффузии
2021
И.В. Пригорный
Alexander Anatolyevich Panin
Д.В. Лукьяненко
+
PDF
Chat
Blow-Up Behavior of Collocation Solutions to Hammerstein-Type Volterra Integral Equations
2013
Zhanwen Yang
Hermann Brunner
Works Cited by This (10)
Action
Title
Year
Authors
+
PDF
Chat
Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension
1999
Gadi Fibich
George Papanicolaou
+
PDF
Chat
THE CAUCHY PROBLEM FOR SCHRÖDINGER–DEBYE EQUATIONS
2000
Brigitte Bidégaray-Fesquet
+
Ordinary Differential Equations
1998
Wolfgang Walter
+
Event location for ordinary differential equations
2000
L. F. Shampine
S. Thompson
+
Scaling invariance and adaptivity
2001
Chris Budd
Benedict Leimkuhler
Matthew D. Piggott
+
PDF
Chat
Blowup for nonlinear wave equations describing boson stars
2007
Jürg Fröhlich
Enno Lenzmann
+
On the computation of blow-up
1990
Andrew M. Stuart
Michael S. Floater
+
PDF
Chat
Numerical study of self-focusing solutions to the Schrödinger-Debye system
2001
Christophe Besse
Brigitte Bidégaray-Fesquet
+
Blow-Up for Nonlinear Wave Equations describing Boson Stars
2008
Jurg FrohlichEnno Lenzmann
+
Ordinary Differential Equations
2017
John M. Stewart