Canonical reduction for dilatonic gravity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>dimensions

Type: Article

Publication Date: 2016-04-12

Citations: 23

DOI: https://doi.org/10.1103/physrevd.93.084017

Abstract

We generalize the 1+1-dimensional gravity formalism of Ohta and Mann to 3+1 dimensions by developing the canonical reduction of a proposed formalism applied to a system coupled with a set of point particles. This is done via the Arnowitt-Deser-Misner method and by eliminating the resulting constraints and imposing coordinate conditions. The reduced Hamiltonian is completely determined in terms of the particles' canonical variables (coordinates, dilaton field and momenta). It is found that the equation governing the dilaton field under suitable gauge and coordinate conditions, including the absence of transverse-traceless metric components, is a logarithmic Schroedinger equation. Thus, although different, the 3+1 formalism retains some essential features of the earlier 1+1 formalism, in particular the means of obtaining a quantum theory for dilatonic gravity.

Locations

  • Physical review. D/Physical review. D. - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Canonical reduction of two-dimensional gravity for particle dynamics 1996 T. Ohta
Robert B. Mann
+ PDF Chat Constraint Lie algebra and local physical Hamiltonian for a generic 2D dilatonic model 2016 Alejandro Corichi
Asieh Karami
Saeed Rastgoo
Tatjana Vukašinac
+ PDF Chat Quantum gravity and the cosmological constant: Lessons from two-dimensional dilaton gravity 2013 Jan Govaerts
Simone Zonetti
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> formulation of the standard model extension gravity sector 2021 K. AultONeal
Quentin G. Bailey
A. Nilsson
+ PDF Chat Quantization of the reduced phase space of two-dimensional dilaton gravity 1996 Werner M. Seiler
R.W. Tucker
+ PDF Chat Exact solution for the metric and the motion of two bodies in (1+1)-dimensional gravity 1997 Robert B. Mann
T. Ohta
+ How to approach Quantum Gravity - Background independence in 1+1 dimensions 2003 Daniel Grumiller
Wolfgang Kummer
+ 2D QUANTUM GRAVITY WITH TORSION, DILATON THEORY AND BLACK HOLE FORMATION 2002 Wolfgang Kummer
+ PDF Chat Classical and quantum gravity in dimensions: I. A unifying approach 1996 Thomas Klösch
Thomas Strobl
+ PDF Chat Canonical analysis of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi></mml:math>-dimensional Palatini action without second-class constraints 2020 Merced Montesinos
Ricardo Escobedo
Jorge Romero
Mariano Celada
+ PDF Chat A New Approach to Classical Einstein–Yang–Mills Theory 2023 Donald Salisbury
+ PDF Chat Quantum theory of dilaton gravity in 1+1 dimensions 1993 Kenji Hamada
+ PDF Chat Hamiltonian reduction of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>Dirac-Yang-Mills mechanics 1998 S. A. Gogilidze
A. Khvedelidze
D. M. Mladenov
Hans-Peter Pavel
+ PDF Chat CANONICAL THEORY OF 2 + 1 GRAVITY 2001 Masakatsu Kenmoku
Toyoki Matsuyama
R. Sato
Satoko Uchida
+ Hamiltonian Reduction of Einstein’s Equations in the (2+2) Formalism under No Isometry Assumptions 2017 J. H. Yoon
+ PDF Chat Gauge theoretic formulation of dilatonic gravity coupled to particles 2000 Victor O. Rivelles
+ TEORI EINSTEIN-DILATON DAN APLIKASINYA UNTUK KOSMOLOGI 2012 Trisna Utami
rer.nat. Bobby Eka Gunara
+ Wolfgang Kummer and the Vienna School of Dilaton (Super-)Gravity 2009 L. Bergamin
René Meyer
+ PDF Chat Exact solution for relativistic two-body motion in dilaton gravity 1997 Robert B. Mann
T. Ohta
+ Gauge theory of gravity based on the correspondence between the 1<i><sup>st</sup></i> and the 2<i><sup>nd</sup></i> order formalisms 2023 David Benisty

Works That Cite This (15)

Action Title Year Authors
+ Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities 2024 Milena Dimova
Natalia Kolkovska
Nikolai Kutev
+ PDF Chat Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids 2017 Konstantin G. Zloshchastiev
+ PDF Chat On the Dynamical Nature of Nonlinear Coupling of Logarithmic Quantum Wave Equation, Everett-Hirschman Entropy and Temperature 2018 Konstantin G. Zloshchastiev
+ PDF Chat Nonlinear wave-mechanical effects in Korteweg fluid magma transport 2018 Konstantin G. Zloshchastiev
+ PDF Chat Superfluid stars and Q-balls in curved spacetime 2021 Konstantin G. Zloshchastiev
+ Kinks in the relativistic model with logarithmic nonlinearity 2019 Ekaterina Belendryasova
Vakhid A. Gani
Konstantin G. Zloshchastiev
+ PDF Chat Temperature-driven dynamics of quantum liquids: Logarithmic nonlinearity, phase structure and rising force 2019 Konstantin G. Zloshchastiev
+ PDF Chat Singularity-free model of electrically charged fermionic particles and gauged <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Q</mml:mi></mml:mrow></mml:math> -balls 2016 Vladimir Dzhunushaliev
Arislan Makhmudov
Konstantin G. Zloshchastiev
+ PDF Chat Matrix logarithmic wave equation and multi-channel systems in fluid mechanics 2019 Konstantin G. Zloshchastiev
+ PDF Chat An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory 2020 Konstantin G. Zloshchastiev