Oscillations of coefficients of Dirichlet series attached to automorphic forms

Type: Article

Publication Date: 2016-05-11

Citations: 11

DOI: https://doi.org/10.1090/proc/13264

Abstract

For $m\ge 2$, let $\pi$ be an irreducible cuspidal automorphic representation of $GL_m(\mathbb {A}_{\mathbb {Q}})$ with unitary central character. Let $a_\pi (n)$ be the $n^{th}$ coefficient of the $L$-function attached to $\pi$. Goldfeld and Sengupta have recently obtained a bound for $\sum _{n\le x} a_\pi (n)$ as $x \rightarrow \infty$. For $m\ge 3$ and $\pi$ not a symmetric power of a $GL_2(\mathbb {A}_{\mathbb {Q}})$-cuspidal automorphic representation with not all finite primes unramified for $\pi$, their bound is better than all previous bounds. In this paper, we further improve the bound of Goldfeld and Sengupta. We also prove a quantitative result for the number of sign changes of the coefficients of certain automorphic $L$-functions, provided the coefficients are real numbers.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Oscillations of coefficients of Dirichlet series attached to automorphic forms 2014 Jaban Meher
M. Ram Murty
+ Oscillations of coefficients of Dirichlet series attached to automorphic forms 2014 Jaban Meher
M. Ram Murty
+ On sums of fourier coefficients of automorphic forms for $gl_r$ 2014 Jaban Meher
+ The number of coefficients of automorphic $L$-functions for $GL_m$ of same signs 2014 Jianya Liu
Jie Wu
+ A note on the number of coefficients of automorphic $L-$functions for $GL_m$ with same signs 2014 Chaohua Jia
+ PDF Chat The number of coefficients of automorphic L-functions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="italic">GL</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math> of same signs 2014 Jianya Liu
Jie Wu
+ Average of Dirichlet Coefficients of Cuspidal Representations Related to $\GL(2)$ 2019 Liyang Yang
+ PDF Chat Average of Dirichlet coefficients of cuspidal representations related to GL(2) 2021 Liyang Yang
+ PDF Chat On sums involving coefficients of automorphic $L$-functions 2009 Guangshi LĂŒ
+ PDF Chat Quotients of $L$-functions: degrees $n$ and $n-2$ 2024 Ravi Raghunathan
+ High power sums of Fourier coefficients of holomorphic cusp forms and their applications 2024 Guangwei Hu
Huixue Lao
Huimin Pan
+ Correlations of multiplicative functions with automorphic L-functions 2022 Yujiao Jiang
Guangshi LĂŒ
+ On $p$-adic $L$-functions for symplectic representations of GL(N) over number fields 2023 Chris Williams
+ A new zero-free region for Rankin-Selberg $L$-functions 2023 Gergely Harcos
Jesse Thorner
+ Integral presentations of the shifted convolution problem and subconvexity estimates for $\operatorname{GL}_n$-automorphic $L$-functions. 2019 Jeanine Van Order
+ PDF Chat Linnik-type problems for automorphic L-functions 2009 Yan Qu
+ A note on the zeros of zeta and $L$-functions 2015 Emanuel Carneiro
Vorrapan Chandee
Micah B. Milinovich
+ Refinements of strong multiplicity one for $\mathrm{GL}(2)$ 2022 Peng‐Jie Wong
+ Divisor-bounded multiplicative functions in short intervals 2021 Alexander P. Mangerel
+ Dirichlet characters and low-lying zeros of L-functions 2019 Peter J. Cho
Jeong-Ho Park