Some Results on Quadrics in Finite Projective Geometry Based on Galois Fields

Type: Article

Publication Date: 1962-01-01

Citations: 33

DOI: https://doi.org/10.4153/cjm-1962-010-2

Abstract

In a paper (5) published in the Proceedings of the Cambridge Philosophical Society , Primrose obtained the formulae for the number of points contained in a non-degenerate quadric in PG ( n, s ), the finite projective geometry of n dimensions based on a Galois field GF ( s ). In § 3 of the present paper the formulae for the number of p -flats contained in a non-degenerate quadric in PG ( n, s ) are obtained. In § 4 an interesting property of a non-degenerate quadric in PG ( 2k, 2 m ) is proved. These properties of a quadric will be used in solving some combinatorial problems of statistical interest in a later paper.

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ A characterization of flat spaces in a finite geometry and the uniqueness of the hamming and the MacDonald codes 1966 R. C. Bose
Robert C. Burton
+ On the number of flats spanned by a set of points in PG(d, q) 1996 Endre Boros
Roy Meshulam
+ On sets of type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mi>r</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mstyle … 2008 Luigia Berardi
Tiziana Masini
+ On sets of type (m,n)_2 in $PG(3,q): PART ONE 2017 Stefano Innamorati
+ Absolute points of correlations of PG(5,q) 2023 Nicola Durante
Giovanni Giuseppe Grimaldi
+ Characterization of quadric cones in a Galois projective space 2000 Rossella Di Monte
Osvaldo Ferri
Stefania Ferri
+ On varieties defined by large sets of quadrics and their application to error-correcting codes 2019 Simeon Ball
Valentina Pepe
+ On varieties defined by large sets of quadrics and their application to error-correcting codes 2019 Simeon Ball
Valentina Pepe
+ Quadrics as hyperplanes in finite affine geometries 1992 Barbu C. Kestenband
+ PDF Chat Absolute points of correlations of $$PG(4,q^n)$$ 2022 Nicola Durante
Giovanni Giuseppe Grimaldi
+ Geometry of Cubic and Quartic Hypersurfaces over Finite Fields 2002 Edoardo Ballico
+ Geometry of Cubic and Quartic Hypersurfaces over Finite Fields 2002 E Ballico
+ Quadrics as hyperplanes in finite affine geometries 1992 Barbu C. Kestenband
+ PDF Chat Counting rational points on quadric surfaces 2018 T. D. Browning
D. R. Heath‐Brown
+ On sets of type (m,n)_2 in PG(3,q): PART TWO 2017 Fulvio Zuanni
+ On the quadric elliptic cones in a Galois projective space 2000 Osvaldo Ferri
Stefania Ferri
Antonella Giallonardo
+ On the elliptic quadrics of PG(2s + 1,<i>q</i>) 2002 Osvaldo Ferri
Stefania Ferri
Antonella Giallonardo
+ On varieties defined by large sets of quadrics and their application to error-correcting codes 2020 Simeon Ball
Valentina Pepe
+ On the Number of Points Caps Obtained from an Elliptic Quadric of PG(3, q) 1982 L. Maria Abatangelo
+ A Bose‐Burton type theorem for quadrics 2003 Klaus Metsch

Works That Cite This (25)

Action Title Year Authors
+ Geometric and pseudo-geometric graphs (q2+1,q+1,1) 1972 R. C. Bose
S. S. Shrikhande
+ PDF Chat Reed-Muller codes associated to projective algebraic varieties 1992 Yves Aubry
+ PDF Chat Anzahl theorems for trivially intersecting subspaces generating a non-singular subspace I: Symplectic and hermitian forms 2024 Maarten De Boeck
Geertrui Van de Voorde
+ Codes projectifs a deux ou trois poids associfs aux hyperquadriques d'une geometrie finie 1975 J. Wolfmann
+ A combinatorial characterization of quadrics 2000 Osvaldo Ferri
Stefania Ferri
Stefano Innamorati
+ On sets of type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mi>r</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mstyle … 2008 Luigia Berardi
Tiziana Masini
+ PDF Chat Hermitian Varieties in a Finite Projective Space PG(<i>N</i>, <i>q</i><sup>2</sup>) 1966 R. C. Bose
I. M. Chakravarti
+ Highlights of Dijen Ray-Chaudhuri’s research 2002 Ákos Seress
+ PDF Chat Strongly regular graphs, partial geometries and partially balanced designs 1963 R. C. Bose
+ Self-dual sets of type ( m, n ) in projective spaces 2004 Osvaldo Ferri
Stefania Ferri
Mauro Zannetti