Absolute points of correlations of $$PG(4,q^n)$$
Absolute points of correlations of $$PG(4,q^n)$$
Abstract The sets of the absolute points of (possibly degenerate) polarities of a projective space are well known. The sets of the absolute points of (possibly degenerate) correlations, different from polarities, of $$\mathrm {PG}(2,q^n)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>PG</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , have …