On the zeros of linear combinations of derivatives of the Riemann zeta function, II

Type: Article

Publication Date: 2017-08-07

Citations: 1

DOI: https://doi.org/10.1142/s1793042118500252

Abstract

The relevant number to the Dirichlet series [Formula: see text], is defined to be the unique integer [Formula: see text] with [Formula: see text], which maximizes the quantity [Formula: see text]. In this paper, we classify the set of all relevant numbers to the Dirichlet [Formula: see text]-functions. The zeros of linear combinations of [Formula: see text] and its derivatives are also studied. We give an asymptotic formula for the supremum of the real parts of zeros of such combinations. We also compute the degree of the largest derivative needed for such a combination to vanish at a certain point.

Locations

  • International Journal of Number Theory - View - PDF

Similar Works

Action Title Year Authors
+ On the zeros of linear combinations of derivatives of the Riemann zeta function 2016 K. Paolina Koutsaki
Albert Tamazyan
Alexandru Zaharescu
+ PDF Chat Zeros of the derivatives of the Riemann zeta-function 1974 Norman Levinson
Hugh L. Montgomery
+ PDF Chat Zeros of the Derivatives of the Riemann Zeta-Function 1998 Norman Levinson
Hugh L. Montgomery
+ Zeros of derivative of Lerch's zeta-function 2020 Ramūnas Garunkštis
Raivydas Šimėnas
Rokas Tamošiūnas
+ Zeros of the derivative of the Riemann zeta-function 1985 Antanas Laurinčikas
+ On the zeros of sums of the Riemann zeta function 2008 Haseo Ki
+ Zeros of polynomials of derivatives of the Riemann zeta function (Analytic Number Theory and Related Topics) 2019 友一 小野塚
+ On the sums of the ordinates of the zeros of the Riemann zeta function 1975 Akio Fujii
+ Zeros of derivatives of dirichlet L-functions 1996 C. Y. Yıldırım
+ A survey on the evaluation of the values of Dirichlet $L$-functions and of their logarithmic derivatives at $1+it_{0}$ (Analytic Number Theory and Related Areas) 2018 Sumaia Saad Eddin
+ Zeros of linear combinations of functions of a special type that are connected with Selberg Dirichlet series 1996 С. А. Гриценко
+ On certain sums over ordinates of zeta-zeros II 2018 Andriy Bondarenko
Aleksandar Ivić
Eero Saksman
Kristian Seip
+ On the zeros of the derivatives of the Riemann zeta function under the Riemann hypothesis (Analytic Number Theory : Distribution and Approximation of Arithmetic Objects) 2016 Ade Irma Suriajaya
+ An estimate of the lower bound of the real parts of the zeros of the partial sums of the Riemann zeta function 2015 G. Mora
+ A discrete mean-value theorem for the higher derivatives of the Riemann zeta function 2021 C. P. Hughes
Andrew Pearce-Crump
+ ON THE ZEROS OF SOME DIRICHLET SERIES LYING ON THE CRITICAL LINE 1981 Сергей Воронин
+ PDF Chat On the zeros of the Riemann zeta-function and L-series-II 1982 R. Balasubramanian
K. Ramachandra
+ On a certain sum of the derivatives of Dirichlet $L$-functions 2020 Hirotaka Kobayashi
+ The sum involving derivative of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>ζ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>s</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> over simple zeros 2006 M. Z. Garaev
A. Sankaranarayanan
+ On the complex magnitude of Dirichlet beta function 2020 Artur Kawalec

Works That Cite This (1)

Action Title Year Authors
+ Zeros of a polynomial of $\zeta^{(j)}(s)$ 2018 Tomokazu Onozuka