Sharpness of the Mockenhaupt–Mitsis–Bak–Seeger restriction theorem in higher dimensions

Type: Article

Publication Date: 2016-07-27

Citations: 8

DOI: https://doi.org/10.1112/blms/bdw041

Abstract

We prove the range of exponents in the general $L^2$ Fourier restriction theorem due to Mockenhaupt, Mitsis, Bak and Seeger is sharp for a large class of measures on $\mathbb{R}^d$. This extends to higher dimensions the sharpness result of Hambrook and {\L}aba.

Locations

  • Bulletin of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Stein--Tomas restriction theorem for general measures 2002 Themis Mitsis
+ Sets of Salem type and sharpness of the $L^2$-Fourier restriction theorem 2013 Xianghong Chen
+ PDF Chat Sharp $L^2$ estimate of Schr\"odinger maximal function in higher dimensions 2018 Xiumin Du
Ruixiang Zhang
+ Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions 2019 Xiumin Du
Ruixiang Zhang
+ Sets of Salem type and sharpness of the 𝐿²-Fourier restriction theorem 2015 Xianghong Chen
+ Endpoint Fourier restriction and unrectifiability 2021 Giacomo Del Nin
Andrea Merlo
+ Sharp $L^2$ estimate of Schrödinger maximal function in higher dimensions 2018 Xiumin Du
Ruixiang Zhang
+ Quantitative Reifenberg theorem for measures 2016 Nick Edelen
Aaron Naber
Daniele Valtorta
+ Quantitative Reifenberg theorem for measures 2016 Nick Edelen
Aaron Naber
Daniele Valtorta
+ A note on maximal Fourier Restriction for spheres in all dimensions 2017 Marco Vitturi
+ PDF Chat Dimension-free Fourier restriction inequalities 2024 Diogo Oliveira e Silva
Błażej Wróbel
+ PDF Chat Convolution Powers of Salem Measures With Applications 2016 Xianghong Chen
Andreas Seeger
+ Gronwall Inequalities in Higher Dimensions 1991 D. S. Mitrinović
‎Josip Pečarić
A. M. Fink
+ PDF Chat $L^2$ restriction estimates from the Fourier spectrum 2024 Marc Carnovale
Jonathan M. Fraser
Ana E. de Orellana
+ Maximal operators and decoupling for $Λ(p)$ Cantor measures 2018 Izabella Łaba
+ PDF Chat Fourier restriction in low fractal dimensions 2021 Bassam Shayya
+ $L^2$ Schrödinger maximal estimates associated with finite type phases in $\mathbb{R}^2$ 2021 Zhuoran Li
Junyan Zhao
Tengfei Zhao
+ A quantitative Balian-Low theorem for higher dimensions 2016 Faruk Temur
+ A Note on Band-limited Minorants of an Euclidean Ball 2017 Felipe Gonçalves
+ A Note on Band-limited Minorants of an Euclidean Ball 2017 Felipe Gonçalves