Fourier restriction in low fractal dimensions
Fourier restriction in low fractal dimensions
Let $S \subset \Bbb R^n$ be a smooth compact hypersurface with a strictly positive second fundamental form, $E$ be the Fourier extension operator on $S$, and $X$ be a Lebesgue measurable subset of $\Bbb R^n$. If $X$ contains a ball of each radius, then the problem of determining the range …